Prevalence and pattern of radiographic hand osteoarthritis and association with pain and disability (the Rotterdam study)

S Dahaghin, S M A Bierma-Zeinstra, A Z Ginai, H A P Pols, J M W Hazes, B W Koes

Osteoarthritis is the most common form of arthritis among the elderly and one of the leading musculo-skeletal causes of disability in Western countries. The hand is often involved in patients suffering from osteoarthritis. The estimated prevalence of osteoarthritis in the hand varies depending on the definition. Although point prevalence of radiographic osteoarthritis (ROA) is reported to be as high as 29–76% in population based studies, the prevalence of symptomatic hand osteoarthritis is much lower, with a point prevalence of between 4% and 6.2%. The pattern of hand joint involvement found among affected individuals remains contentious. In addition, despite advances in our understanding of the disease, a discrepancy remains between structural markers of pathology and the clinical syndrome of osteoarthritis typified by joint pain and disability. Zhang et al reported that symptomatic hand osteoarthritis limited several daily functional activities in the Framingham study. Jones et al reported a modest association between the presence of ROA and hand pain or disability in a population with diagnosis of hand osteoarthritis.

However, whether the association between ROA and hand pain or disability differentiates between different hand joint groups has not been evaluated. Our aim in this study was to explore the prevalence and pattern of ROA in the hand joints, and to investigate the association between ROA of different joints in the hand and self reported hand pain and/or disability in an open population.

METHODS

Study population
For this study we used cross sectional baseline data from the Rotterdam study, a population based cohort. The medical ethics committee of the Erasmus Medical Centre approved the study, and written informed consent was obtained from all participants.

Objective: To investigate the prevalence and pattern of radiographic osteoarthritis (ROA) of the hand joints and its association with self reported hand pain and disability.

Methods: Baseline data on a population based study (age ≥55 years) were used (n=3906). Hand ROA was defined as the presence of Kellgren–Lawrence grade ≥2 radiological changes in two of three groups of hand joints in each hand. The presence of hand pain during the previous month was defined as hand pain. The health assessment questionnaire was used to measure hand disability.

Results: 67% of the women and 54.8% of the men had ROA in at least one hand joint. DIP joints were affected in 47.3% of participants, thumb base in 35.8%, PIP joints in 18.2%, and MCP joints in 8.2% (right or left hand). ROA of other joint groups (right hand) co-occurred in 56% of DIP involvement, 88% of PIP involvement, 86% of MCP involvement, and 65% of thumb base involvement. Hand pain showed an odds ratio of 1.9 (1.5 to 2.4) with the ROA of the hand (right). Hand disability showed an odds ratio of 1.5 (1.1 to 2.1) with ROA of the hand (right or left).

Conclusions: Hand ROA is common in the elderly, especially in women. Co-occurrence of ROA in different joint groups of the hand is more common than single joint disease. There is a modest to weak association between ROA of the hand and hand pain/disability, varying with the site of involvement.

The baseline measurements were conducted between 1990 and 1993. The complete study design has been described previously. All inhabitants of a suburb of Rotterdam aged 55 years and older were invited to participate. In all, 7983 participants were examined (a response rate of 78%). At baseline, trained interviewers undertook an extensive home interview on demographic characteristics, medical history, risks factors for chronic diseases, and therapeutic drug use. Radiographs were taken at the research centre at baseline. For feasibility reasons we scored hand radiographs for ROA on only 3906 of the participants, including all those who were available for follow up six years later (n = 3585).

Radiographic scoring
Two trained assessors (S Dahaghin and U Cimen), who were blinded to the clinical and demographic data, scored standard anteroposterior radiographs of both hands in 2002. Radiographs were scored for six individual radiographic features of osteoarthritis in the five distal interphalangeal (DIP) joints, four proximal interphalangeal (PIP) joints, five metacarpophalangeal (MCP) joints, the first carpometacarpal joint (CMC1), and the trapeziocapitate joint (TS). Osteophytes were differentiated into three grades (small, moderate, large), while joint space narrowing, sclerosis, cysts, lateral deformity, and cortical collapse were scored as either present or absent. Lateral deformity was defined as malalignment of at least 15° (modified Kallman score). Each joint was graded for overall ROA using a modified Kellgren–Lawrence (K-L) grade scaled from 0 to 4 (appendix 1). ROA for each joint was defined as a K-L grade of ≥2.

Abbreviations: CMC1/TS, first carpometacarpal and trapeziocapitate joint; DIP, distal interphalangeal joint; K-L, Kellgren-Lawrence radiological grade; MCP, metacarpophalangeal joint; PIP, proximal interphalangeal joint; ROA, radiographic osteoarthritis.
MCP, and CMC1/TS joint groups were defined as positive if at least one joint of the group had a K-L grade of ≥ 2. Hand ROA was defined as the presence of a K-L grade of ≥ 2 in two of three groups of hand joints (DIP, PIP, and CMC1/TS) of each hand. The same definition was used for the cut off point K-L ≥ 3 or K-L = 4.

To investigate the reliability of the scoring, the two assessors both scored a random subset of 205 radiographs independently. The interobserver reliability for K-L ≥ 2 as a dichotomous variable expressed by the κ statistic was as follows: DIP joints, 0.60; PIP joints, 0.61; MCP joints, 0.63; and CMC1/TS (base of thumb), 0.74.

Hand pain

The following questions were asked during the home interview:

- Did you have pain on the right (left) hand during the last month?
- How long have you had the pain?

The answer to the second question ranged from less than one month to more than five years.

Hand disability

Stanford health assessment questionnaire (HAQ) was used to assess disability. Eight questions on the HAQ concerning hand function were used to assess hand disability (appendix 2). Each question scored from “no difficulty” (0) to “unable to do” (3). Of the components with more than one question related to the hand function, the highest score was considered (as in the original HAQ). Dependence on equipment or physical assistance was ignored; this represents residual disability after compensatory efforts. The scores were averaged into an overall hand disability score on a scale from 0 (no hand disability) to 3 (hand severely disabled). A mean score of > 0.5 was considered to mean a moderate to severe hand disability.

Data analysis

Point prevalence of ROA was calculated for each joint, for the joint groups, and for the whole hand. A rectangle diagram (Venn diagram with four variables) was used to show the distribution of ROA in the four hand joint groups.

Univariate and multivariate logistic regression analysis was used to evaluate the strength of the association of ROA in the different hand joint groups in each hand and also to examine associations between ROA and hand pain and/or disability. The associations are presented as odds ratios (OR) with 95% confidence intervals (CI) and were adjusted for age and sex. All analyses were carried out at the level of the person. The association between ROA and hand pain was evaluated for each hand separately, while the association with hand

Table 1 Baseline characteristics of the study population (n = 3906)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Female (%)</th>
<th>Age (years) (mean (SD))</th>
<th>Hand disability (%)</th>
<th>Overall disability index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>58.3</td>
<td>66.6 (7.3)</td>
<td>5.8</td>
</tr>
<tr>
<td>Right/left</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROA of DIP joints (%)</td>
<td>47.3</td>
<td>38.6</td>
<td>34.8</td>
<td></td>
</tr>
<tr>
<td>ROA of PIP joints (%)</td>
<td>18.2</td>
<td>13.4</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>ROA of MCP joints (%)</td>
<td>8.2</td>
<td>6.1</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>ROA of CMC1/TS (%)</td>
<td>35.8</td>
<td>25.8</td>
<td>30.2</td>
<td></td>
</tr>
<tr>
<td>Hand ROA (%)</td>
<td>28.3</td>
<td>21.5</td>
<td>20.6</td>
<td></td>
</tr>
<tr>
<td>Hand pain (%)</td>
<td>16.8</td>
<td>14.2</td>
<td>13.5</td>
<td></td>
</tr>
</tbody>
</table>

*Hand disability: mean score of 0.5 or more of various components composed of eight questions related to hand function on the Stanford health assessment questionnaire (HAQ).
++Overall disability index: mean score of 0.5 or more on HAQ index (scored 0 to 3).
*ROA: presence of K-L ≥ 2 in at least one joint of the group.
†Hand ROA: presence of K-L ≥ 2 in two of three groups (DIP, PIP, CMC1/TS).
CMC1/TS, first carpometacarpal plus trapezioscaphoid (base of thumb); DIP, distal interphalangeal; K-L, Kellgren-Lawrence radiological grade; MCP, metacarpophalangeal; PIP, proximal interphalangeal; ROA, radiographic osteoarthritis.

Figure 1 Point prevalence of radiographic osteoarthritis (Kellgren-Lawrence radiological grade ≥ 2) in the hand joints of men and women (n = 3906).
disability was evaluated for the presence of ROA in either the right or the left hand as well as for ROA of the dominant hand. The association with hand pain and/or disability was also examined in relation to the number of joints with ROA (as a continuous variable) and for the more severe forms of ROA (K-L ≥3 or K-L = 4).

The SPSS (version 10) program was used for all analyses. The Span program was used to generate rectangle diagrams.26

RESULTS
In all, we evaluated 3906 participants (53.8% female, 46.2% male), of mean age 66.6 years (table 1).

Prevalence and pattern of ROA
In all, 61.7% of our study population had K-L ≥2 in at least one of the joints of the hand (67% of the women and 54.8% of the men). DIP joints had the highest frequency (47.3%), followed by CMC1/TS joints (35.8%), PIP joints (18.2%), and MCP joints (8.2%) of the right or left hand.

ROA in the separate DIP joints (right hand) occurred in 6.8–17% of men and in 9.7–28.6% of women. The ranges were 3.0% to 5.6% and 4.4% to 7.6% in the PIP joints, 0.2% to 2.2% and 18.8% to 21.2% in the CMC1/TS joints for men and women, respectively (fig 1).

Except for DIP 2 (right = 23.5%, left = 16.8%), CMC1 (right = 17.2%, left = 21.3%), and TS (right = 15.6%, left = 17.6%), the other hand joints showed almost the same frequency in the right and left hands.

Hand ROA was present in 21.5% of right hands and 20.6 of left hands. The prevalence of ROA increased with age up to 84 years, but decreased in the group aged 85 years and older (fig 2).

Use of a rectangle diagram showed that ROA in one joint group more often co-occurred with ROA in other joint groups in women than in men: DIP joints, 61% (women) v 47% (men); PIP joints, 91% v 82%; MCP joints, 91% v 77%; CMC1/TS joints, 68% v 59% (all in the right hand, fig 3). Evaluating the strength of the relations, the PIP joints and the MCP joints had the highest odds ratios with ROA of the other joint groups of the right hand (OR = 9.1 (95% CI, 6.8 to 12.4) and OR = 5.4 (3.6 to 8.0), respectively). CMC1/TS joints showed the lowest association with other joint groups of the right hand (OR = 3.1 (2.6 to 3.6)) (table 2). The left hand showed similar results.

ROA and hand pain
Prevalence of hand pain (right) was 14.2%; 97% of the participants suffered from this for longer than one month. Table 3 shows the association between hand pain and ROA in the joint groups of the right hand, the strongest being with the CMC1/TS. Right hand pain showed an association with ROA of the related hand (OR = 1.9 (95% CI, 1.5 to 2.4)). With the cut off point at K-L ≥3 the association was nearly the same (OR = 1.8 (1.3 to 2.5)), but when the cut off point was increased to K-L = 4, there was a stronger association with pain in the right hand (OR = 3.6 (2.2 to 5.8)). Increasing the number of joints with ROA produced a greater association with pain (OR = 1.1 (1.1 to 1.2), right hand). Generalised hand osteoarthritis (ROA of all four joint groups of the right hand) showed an increased association with hand pain (OR = 2.7 (1.4 to 5.2)). The associations of hand pain and ROA in the left hand were similar but are not presented here.

ROA and hand disability
The prevalence of hand disability was 5.8%. The presence of hand ROA (right/left) showed an association with hand disability (OR = 1.5 (1.1 to 2.1)). Specification to the dominant hand gave nearly the same results. Table 4 shows the association between hand disability and ROA (right/left) differentiated for hand joint group; the association was only significant for the MCP joints (OR = 2.0 (1.3 to 3.0)). The association of ROA of the base of the thumb became significant when the analysis was specified to the dominant hand. However, MCP joints of the dominant hand showed odds ratios similar to the base of the thumb for hand disability.

Figure 2 Age specific point prevalence (%) of osteoarthritis in hand joint groups (right/left).

Figure 3 Rectangle diagram of radiographic osteoarthritis in the hand joint groups (n = 3906). The coloured rectangles represent osteoarthritis (oa) of Kellgren–Lawrence radiological grade ≥2 in at least one joint of the group (DIP, PIP, MCP, base) in the right hand for men (top panel) and women (bottom panel). Base, first carpometacarpal and trapeziocapitate joint (thumb base); DIP, distal interphalangeal joint; MCP, metacarpophalangeal joint; PIP, proximal interphalangeal joint.
Using the cut off points K-L ≥3 and K-L = 4 (right/left) showed nearly the same association with hand disability (OR = 1.6 (1.1 to 2.5) and OR = 1.6 (0.9 to 2.9), respectively. An increase in the number of hand joints with ROA showed a borderline significant association with hand disability. This association increased to a significant level when the number of joints with ROA in the only the dominant hand was analysed in relation to hand disability (OR = 1.1 (1.0 to 1.2)). Generalised hand osteoarthritis (ROA in all four hand joint groups) also showed a stronger association with hand disability (OR = 2.7 (1.3 to 6.0)).

DISCUSSION

The results of our study confirm that hand ROA is a common disease in the elderly, especially in women. It is more likely to occur in several different hand joint groups simultaneously than in single joints, the latter being more prevalent in women than in men. More than 80% of ROA affecting the PIP and MCP joints co-occurred with the other hand joint groups. We confirmed a modest association between ROA and hand pain, the strongest relation being with involvement of the base of the thumb. Hand disability showed a rather weak association with ROA, the strongest relation being with the MCP joints and the base of the thumb.

As the hand joints are small and the features of osteoarthritis often difficult to define, interpreting the radiographs of these joints is challenging. However, our interobserver reliability was good and similar to the results of other studies. The predominance given to osteophytes in the original Kellgren-Lawrence grading scheme has been discussed previously. In the present study we used the modified definition which defines grade 3 ROA as a diminution in joint space regardless of whether or not there are osteophytes. This eliminates the predominance given to the osteophyte and thus probably provides more valid results. The definition of hand osteoarthritis (ROA in two of three hand joint groups) which we used, reported by Hirsch et al., does not include the MCP joints. To evaluate whether including the MCP joints in the definition would change the association with hand pain or disability we also tested an alternative definition of hand ROA that included the MCP joints (ROA in two of four hand joint groups in each hand). With this alternative definition the results were the same.

In our study, over 55% of the participants had ROA in at least one hand joint. This means that cartilage degeneration or subchondral bone reaction is present in at least one joint of the hand in more than half the open population aged 55 years and over. This high frequency of ROA, increasing with age and more frequent in the women, confirms previous findings. Van Saase reported a slight decrease in the prevalence of ROA in very old people, which was confirmed in our study in people aged 85 years and over. However, only 47 participants of our study population (1.2%) reached this age, which may have produced an unstable estimate in this group.

Considering that osteoarthritis is a chronic disease, another possible explanation is the selection of healthy survivors or a lower response rate of disabled persons.

The order of involvement of the hand joint groups in our study was also comparable with other findings. DIP joints and the base of the thumb were involved most often, followed by the PIP joints. This was also reported by Kellgren et al. and Egger et al. The MCP joints had the lowest frequency in our population, in accordance with findings of Chaisson et al. but in contrast to van Saase et al., who reported a higher prevalence of ROA in MCP than in PIP joints. Chaisson et al. also reported this inconsistency.

For the first time, we have visualised the pattern of ROA of the hand joint groups occurring solely or co-occurring with other joint groups in a rectangle diagram. This shows that the PIP and MCP joints are more affected concurrently with the other joint groups and are rarely affected alone. This finding was confirmed by logistic regression analysis. The base of the thumb had the lowest odds ratio with the other joint groups. This supports the view that systemic factors play a more

Table 3	Association of hand pain with radiographic osteoarthritis in the hand joint groups (right hand)	
Joint group	Univariate	Multivariate
DIP	1.5 (1.2 to 1.8)	1.1 (0.9 to 1.4)
PIP	1.8 (1.4 to 2.3)	1.4 (1.1 to 1.9)
MCP	1.6 (1.1 to 2.3)	1.2 (0.8 to 1.7)
CMC1/TS	2.0 (1.6 to 2.4)	1.7 (1.4 to 2.2)

Values are odds ratios (95% confidence intervals) adjusted for age and sex.

*Presence of Kellgren-Lawrence radiological grade ≥2 in at least one joint of the group.

Table 4	Association of hand disability with radiographic osteoarthritis in the hand joint groups	
Joint group	Univariate	Multivariate
DIP	1.3 (0.9 to 1.8)	1.2 (0.8 to 1.7)
PIP	1.1 (0.8 to 1.7)	0.9 (0.6 to 1.4)
MCP	2.0 (1.3 to 3.0)	1.8 (1.2 to 2.9)
CMC1/TS	1.3 (1.0 to 1.9)	1.2 (0.8 to 1.7)

Values are odds ratios (95% confidence intervals) adjusted for age and sex.

*Presence of Kellgren-Lawrence radiological grade ≥2 in at least one joint of the group in the right/left hand.

CMC1/TS, first carpometacarpal and trapeziocapitaphoid joint (base of thumb); DIP, distal interphalangeal joint; MCP, metacarpophalangeal joint; PIP, proximal interphalangeal joint.

*Note: The order of involvement of the hand joint groups in our study was also comparable with other findings. DIP joints and the base of the thumb were involved most often, followed by the PIP joints. This was also reported by Kellgren et al. and Egger et al. The MCP joints had the lowest frequency in our population, in accordance with findings of Chaisson et al. but in contrast to van Saase et al., who reported a higher prevalence of ROA in MCP than in PIP joints. Chaisson et al. also reported this inconsistency.

For the first time, we have visualised the pattern of ROA of the hand joint groups occurring solely or co-occurring with other joint groups in a rectangle diagram. This shows that the PIP and MCP joints are more affected concurrently with the other joint groups and are rarely affected alone. This finding was confirmed by logistic regression analysis. The base of the thumb had the lowest odds ratio with the other joint groups. This supports the view that systemic factors play a more
important role than physical factors in ROA of the PIP and MCP joints, but local mechanical factors may play a greater role in ROA of the base of the thumb.

With regard to the association between a structural marker of osteoarthritis and its clinical impact, the presence of hand ROA shows a modest to weak association with clinical symptoms such as hand pain and/or disability, as reported previously. Surprisingly, our analysis in an open population gave a similar association of ROA with hand pain or disability to that reported by Jones et al., who analysed a group of subjects with a diagnosis of hand osteoarthritis. In addition, we found a dose–response relation with hand pain, which increased with the number of joints affected by ROA, with generalised hand ROA (with all four hand joint groups involved), and with the severe form of ROA (Kellgren–Lawrence grade 4). However, only generalised hand ROA, and not the severity of Kellgren–Lawrence grade, showed a significant increase in the association with hand disability.

We examined the relation between hand pain and ROA of the different hand joint groups and showed that ROA of the base of the thumb had the strongest association with hand pain. This supports the hypothesis that ROA of the base of the thumb has a greater impact on pain than the other hand joint groups. ROA of the base of the thumb (right or left side) was less associated with hand disability than ROA of the MCP joints. However, ROA of the base of the thumb on the dominant hand had a significant association with hand disability, similar to that of the MCP group in the dominant hand. We initially thought that the relation with MCP joint disease might reflect the presence of another inflammatory disorder such as rheumatoid arthritis. However, ROA of the MCP joints was concurrent in more than 80% of cases with ROA of the other hand joint groups, while it is rare in rheumatoid arthritis. Thus the result suggests that ROA at the MCP joints is more disabling than at other sites, or indicates another that a more generalised form of hand ROA is more disabling.

This study has several potential limitations. First, it was primarily designed as a study of determinants and prognosis of chronic diseases in elderly people and not specifically for hand disease. Thus we did not have data on the exact location of hand pain or a pain severity measure. Second, there was some selection bias in our study population compared with the total population of the Rotterdam study. We scored radiographs of 3906 participants including all those available for follow up six years later. Our study population was younger, had a smaller proportion of women, and was less disabled than the total population at baseline. To examine whether the results of our study can be generalised to the overall Rotterdam population, we estimated the point prevalence of hand ROA in the whole of the Rotterdam study. Adjusted for the different age groups this resulted in an almost 3% higher estimate. The estimate was almost 2% higher when adjusted for the severity of general disability. Thus the point prevalence of ROA shown in our study is probably somewhat of an underestimate. However, the prevalence of hand pain was the same for both populations. The association with hand pain and/or disability might also be underestimated in our population.

Conclusions

We present extensive data on the prevalence of ROA of hand joint groups in a large open population of elderly people of both sexes which will add to the existing knowledge of this disorder. Our study also showed that the PIP and MCP joint groups were often affected concurrently with the other joint groups and rarely alone. Of the separate hand joint groups, ROA of the thumb base was the main determinant of hand pain, followed by the PIP joints. Although the most affected joints in the hand, ROA in this joint group seems clinically unimportant. ROA of the MCP joints and the base of the thumb were both associated with hand disability.

ACKNOWLEDGEMENTS

We thank Mrs R Bernsen for statistical analysis and Mr U Cimen for scoring the radiographs, and F van Rooij, E van der Heijden, R Vermeer, and J Verwey for collecting the data. We also thank the general practitioners, pharmacists, and the many field workers at the research centre in Ommoord, and of course all the participants.

APPENDIX 1

DEFINITION OF THE KELLGREN–LAWRENCE RADIOGRAPHIC GRADES

Grade 0, none: no features of osteoarthritis

Grade 1, doubtful: minute osteophyte, doubtful significance

Grade 2, minimal: definite osteophyte, unimpaired joint space

Grade 3, moderate: diminution of joint space

Grade 4, severe: joint space impaired with sclerosis of subchondral bone

APPENDIX 2

QUESTIONS ON THE HEALTH ASSESSMENT QUESTIONNAIRE (HAQ) USED FOR THE HAND DISABILITY INDEX

Are you able to?

- Dress yourself, including handling of closures?
- Comb your hair or do your own make-up?
- Turn taps on and off?
- Cut your meat, and lift a full cup or glass to your mouth?
- Open a new milk carton?
- Open car doors?
- Hold a pen or a pencil?
- Open jars which have been opened previously?

REFERENCES

bmjupdates+

bmjupdates+ is a unique and free alerting service, designed to keep you up to date with the medical literature that is truly important to your practice.

bmjupdates+ will alert you to important new research and will provide you with the best new evidence concerning important advances in health care, tailored to your medical interests and time demands.

Where does the information come from?

bmjupdates+ applies an expert critical appraisal filter to over 100 top medical journals. A panel of over 2000 physicians find the few ‘must read’ studies for each area of clinical interest.

Sign up to receive your tailored email alerts, searching access and more…

www.bmjupdates.com
Prevalence and pattern of radiographic hand osteoarthritis and association with pain and disability (the Rotterdam study)

S Dahaghin, S M A Bierma-Zeinstra, A Z Ginai, H A P Pols, J M W Hazes and B W Koes

Ann Rheum Dis 2005 64: 682-687 originally published online September 16, 2004
doi: 10.1136/ard.2004.023564

Updated information and services can be found at:
http://ard.bmj.com/content/64/5/682

These include:

References
This article cites 21 articles, 5 of which you can access for free at:
http://ard.bmj.com/content/64/5/682#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/64/8/1248.full.pdf

Topic Collections
Articles on similar topics can be found in the following collections
- Pain (neurology) (883)
- Degenerative joint disease (4641)
- Musculoskeletal syndromes (4951)
- Osteoarthritis (931)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
Are autoantibodies against a 25-mer synthetic peptide of M3 muscarinic acetylcholine receptor a new diagnostic marker for Sjögren’s syndrome?

We read with great interest the article by Naito and colleagues,1 who recently proposed the autoantibodies against M3 muscarinic acetylcholine receptor (anti-M3R) as a new diagnostic marker for patients with Sjögren’s syndrome (SS).

We have been studying anti-M3R recently2 and have reviewed some theoretical aspects.3 The results of our work with the same 25-mer synthetic peptide (K-R-T-V-P-P-G-E-C-F-I-Q-R-G-E-N-G) as used by Naito et al.4 showed a similar prevalence of anti-M3 in patients with SS (table 1). Nevertheless, we did not draw the same conclusions and could not agree with the statement that antibodies against the 25-mer synthetic peptide might be a new diagnostic marker for SS.

We believe that the authors should mention a misleading fact in the article by Bacman et al.,5 which was discussed by Cavill et al.6 and Dawson et al.7—namely, the sequence of 25-mer synthetic peptide used by Bacman et al. was in fact the amino acid sequence from the second extracellular loop of M4 muscarinic acetylcholine receptor. Neither of the two groups were able to detect the activity of anti-M3R with conventional immunological approaches. Furthermore, Gao et al.8 constructed a CHO cell line expressing the human M3R gene and found positive anti-M3R antibodies in 9/11 patients with SS and in none of 11 healthy controls.9 The enzyme linked immunosorbent assay (ELISA) used by Naito et al. was somewhat similar to our procedure. In our ELISA, Costar medium binding microtiter plates were coated with the same 25-mer peptide in absolute ethanol (10 mg/l), and incubated at 4°C for at least 3 hours. Serum samples were first diluted 1:100 in 1% bovine serum albumin (BSA)/phosphate buffered saline (PBS) (Naito et al. 1:50 in 5% BSA/PBS) and incubated for 1 hour at room temperature (Naito et al. for 2 hours at 37°C). Optical density values of anti-M3R were not normally distributed in any of our tested groups. Therefore, the cut off value was estimated at the 95th centile of 349 controls. Neither sensitivity nor specificity of the ELISA for SS was improved by binding the synthetic peptide to BSA by a cross linker (N-(γ-maleimidobutyryloxy)succinimide ester; Pierce).

In conclusion, it seems that the 25-mer synthetic peptide used in routine immunological techniques does not disclose clinically relevant antibodies, suggesting that a short linear peptide does not depict an adequate epitope for the binding of anti-M3R. Data presented by Gao et al., applying native M3R protein, seem far more promising, but they should be verified on a larger group of patients and controls.

P Zigon, B Božič, S Čučnik, B Rozman, M Tomišč, T Kveder
University Medical Centre, Department of Rheumatology, Ljubljana, Slovenia

Correspondence to: Ms T Kveder, University Medical Centre, Department of Rheumatology, Vodnikova 62, SI-1000 Ljubljana, Slovenia; tanja.kveder@ukl.si

Rapid response

If you have a burning desire to respond to a paper published in the Annals of the Rheumatic Diseases, why not make use of our ‘rapid response’ option? Log on to our website (www.anrnheumdis.com), find the paper that interests you, and send your response via email by clicking on the ‘el letters’ option in the box at the top right hand corner. Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on ‘read el letters’ on our homepage.

The editor will decide as before whether also to publish it in a future paper issue.

Author’s reply

Dr Tanja Kveder et al. point out two messages about our paper. Firstly, that our previous results are supported by their further experiments using the same 25-mer synthetic peptides. Secondly, they suggest that our statement that antibodies against the 25-mer synthetic peptide might be a new diagnostic marker for SS is open to criticism. We agree with Dr Kveder’s comments, in part, because we did not elucidate the function of the anti-25-mer synthetic peptide Abs using M3R transfected cells or HSG cell lines. However, Abs against the second extracellular portion of M3R are detected in a subgroup of patients with SS and the presence of this Ab is significantly associated with anti-SSB Ab.1 Therefore, we consider that anti-25-mer synthetic peptide Abs might be a new diagnostic marker in a subgroup of patients with SS. Of course, further experiments on the functional analysis using anti-25-mer synthetic peptide Abs and anti-M3R protein Abs would be helpful to clarify the better diagnostic marker in patients with SS.

T Sumida
Department of Internal Medicine, University of Tsukuba, Tsukuba City, Japan; tsumida@md.tsukuba.ac.jp

References

Table 1: Anti-M3R antibodies in patients with Sjögren’s syndrome (SS), systemic lupus erythematosus (SLE), and healthy controls (C)

<table>
<thead>
<tr>
<th>Abs (moI)</th>
<th>C [n = 349]</th>
<th>SS [n = 107]</th>
<th>SLE [n = 101]</th>
<th>pSS* [n = 75]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>117</td>
<td>179</td>
<td>116</td>
<td>159</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>122</td>
<td>266</td>
<td>120</td>
<td>220</td>
</tr>
<tr>
<td>Median</td>
<td>88</td>
<td>92</td>
<td>89</td>
<td>81</td>
</tr>
<tr>
<td>Maximum</td>
<td>1216</td>
<td>1755</td>
<td>872</td>
<td>1162</td>
</tr>
<tr>
<td>Minimum</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>95th Centile</td>
<td>285</td>
<td>635</td>
<td>355</td>
<td>572</td>
</tr>
<tr>
<td>Number of positive sera</td>
<td>16</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Percent of positive sera</td>
<td>4.8</td>
<td>15.0</td>
<td>5.9</td>
<td>14.7</td>
</tr>
</tbody>
</table>

*pSS, primary SS; †SS, primary + secondary SS.
significant short term benefit in adhesive capsulitis, but benefits are not maintained beyond 6 weeks”.

Although the authors were careful with their inclusion criteria, they failed to set a cut off point from the time of onset of pain and stiffness of the shoulder. Their subjects had a mean (SD) duration of symptoms of 25.3 (13.2) weeks. This indicates that some of the participants in this study had a frozen shoulder for 38.6 weeks or approximately 9 months. The treatment period was limited to 3 weeks, regardless of the duration of symptoms. There were no other interventions. Other reported studies have also included patients with long established adhesive capsulitis. The latter with a mean duration at presentation of 5.5 months before oral corticosteroids were used in a trial.

This study makes an important contribution to the subject, but the authors make the point that future research should evaluate different combinations of treatment and their optimal duration.

Based on my experience, I support this recommendation. I have reported the treatment of 30 patients with idiopathic frozen shoulder (IFS). The mean duration of symptoms before referral was 9 weeks. The treatment consisted of 1–3 intra-articular injections of betamethasone (Celestone Chondrosa) followed by oral prednisone 15–20 mg daily, initially for 2 weeks. A home exercise programme was advised. All 30 patients regained full range of movement of the affected shoulder with freedom from pain and without relapse.

Future trials should incorporate a treatment group that includes a combination of oral and intra-articular corticosteroids. Double-blind trials are problematic given the generally poor outcome for untreated IFS. Patients with frozen shoulder with an onset greater than 16 weeks should be excluded from further trials. IFS is a debilitating condition that is currently perceived as having a poor prognosis. Although it is not life threatening, it has a major impact on quality of life. It is therefore important that rheumatologists establish benchmarks for the management of this condition and educate other medical practitioners of the value of early, active treatment in achieving good outcomes.

W A Douglas
201 Wickham Terrace, Brisbane Qld 4000, Australia;
w_douglas@bigpond.net.au

References

Author’s reply
I thank Dr Douglas for his interest and observations about our trial. He has documented his positive anecdotal experience in treating 30 patients with adhesive capsulitis with a combination of intra-articular and oral corticosteroids in a brief letter to the editor. Unfortunately, this has not been published as a full report so no details are provided. It is not clear whether this was an open prospective trial or a retrospective chart review, and, if the latter, whether all patients with adhesive capsulitis were included in the review. Similarly, no numerical data are provided and the time interval between the 1–2 intra-articular steroid injections and the start of oral prednisone was not reported. None the less, his claim that all patients fully recovered, on average 4.5 weeks from initiation of treatment (although no measure of variance is provided) is noteworthy, lends broad support to the conclusions of our trial, and, we agree, may warrant a formal trial.

We disagree that double blind trials pose a problem trial in studying adhesive capsulitis, as this is the best method for minimising bias in assessment of treatment outcome. Placebo controlled trials are appropriate when there are no known effective treatments, and controlled trials are essential for self limiting conditions such as adhesive capsulitis. While we agree that adherence in this painful, disabling condition, most studies have in fact established that it has a good prognosis, with resolution of symptoms in 2–3 years, on average, in the majority of patients.

We also disagree with the suggestion that potential trial participants should be excluded if symptoms have been present for longer than 16 weeks. Although we agree that corticosteroids may be more effective in the earlier phase of adhesive capsulitis, and therefore attempting to limit participation in trials of corticosteroids to those with recent onset of symptoms may appear to have merit, early recruitment has proved universally difficult for trials in this field.

Furthermore, our positive trial, which included participants with an average of 21–25 weeks of symptoms, provides clear evidence that this constraint is not necessary.

R Buchbinder
Department of Clinical Epidemiology, Cabrini Hospital and Monash Department of Epidemiology and Preventive Medicine, Suite 41, Cabrini Medical Centre, 183 Wattletree Rd, Malvern, Victoria, Australia 3144; rachelle.buchbinder@med.monash.edu.au

References

doi: 10.1136/ard.2004.023564corr1

Figure 3 in this article should have been published in black colour but mistakenly appeared in black and white. The correct figure has now been inserted in the Online version and subscribers to the journal can see the amended article at http://ard.bmjournals.com/cgi/content/full/64/3/682

FORTHCOMING EVENTS

Second EULAR Course on Systemic Lupus Erythematosus
4–9 September 2005; San Miniato, Italy
This course for 70 young rheumatologists (age <40) has been designed to provide comprehensive, intensive training on various aspects of this disease. It will deal with the following topics:

- Treatment of SLE, molecular basis of drug action, and pharmacogenetics
- Evaluation of patients with SLE: disease activity, damage, response to treatment
- Renal disease in SLE
- Neurological disease in SLE
- Skin disease in SLE
- Particular problems in SLE: fever, vaccination, pregnancy, haematological manifestations

Contact: Organising secretariat: c/o Clinical and Experimental Rheumatology, Via Santa Maria 31, I-56126 Pisa, Italy.
Tel: +39 050 40124 Fax: +39 050 500299
Email: slcourse@clinexpshemato.org

Third International Conference on Neuroendocrine Immune Basis of the Rheumatic Diseases
10–12 September 2005; Genova-Santa Margherita, Italy
Topic: The clinical translation of the neuroendocrine immune mechanisms of the rheumatic diseases for a better understanding and management of their diagnosis and treatment.

Local organiser: Professor Maurizio Cutolo, Division of Rheumatology, DIMI, University of Genova, Italy
Email: mcutolo@unicg.it
Contact: Organising secretariat: Michela Civelì, EDRA spa, Viale Monza , 133 20125, Milan, Italy
Tel: +39 (0)2 281 72300 Fax: +39 (0)2 281 72399
Email: 3rdnei@edraspa.it

XI Mediterranean Congress of Rheumatology
22–24 September 2005; Heraklion Crete, Greece
The meeting is organised by the Departments of Medicine, Rheumatology, and Clinical Immunology and Allergy, University of Crete.
Contact: Organising Bureau (secretariat and travel office) of the Mediterranean Congress of Rheumatology:
Tel: 00 30 210 9006000 Fax: 00 30 210 924936
Email: nickolopoulou@amphitron.gr

Future EULAR congresses
21–24 June 2006; EULAR 2006; Amsterdam, The Netherlands
13–16 June 2007; EULAR 2007; Barcelona, Spain
11–14 June 2008; EULAR 2008; Paris, France