Effect of activated human polymorphonuclear leucocytes on T lymphocyte proliferation and viability

Immunology. 2012 Nov;137(3):249-58. doi: 10.1111/imm.12004.

Abstract

Human polymorphonuclear leucocytes (PMN) are thought to be immunosuppressive. The suppressive mechanism(s) used by PMN are, however, not well defined and in this study they were analysed using T-cell responses to CD3(+) CD28 monoclonal antibodies (mAb) as a readout. We demonstrate that in vitro activated PMN (PMN(act)) can, without any T-cell interaction, induce apparent T-cell suppression by inhibiting the stimulatory capacity of the CD3 mAb. However, a cell-directed suppression of T-cell proliferation was observed when PMN(act) were added to pre-activated T cells that are already committed to polyclonal proliferation. This suppression was partially reversed by catalase addition (P < 0·01) and largely reversed by addition of exogenous interleukin-2 (P < 0·001) but was not significantly reduced by nitric oxide synthase inhibition, myeloperoxidase inhibition or addition of excess arginine. Following removal of PMN(act) , suppressed T cells could respond normally to further stimulation. In addition to suppressing proliferation, co-culture with PMN(act) also induced a significant decrease in T-cell viability that was reversed by catalase addition (P < 0·05). The addition of the arginase inhibitor N-hydroxy-nor-l-arginine induced both a further significant, catalase-sensitive, loss in T-cell viability and increased nitrite release (P < 0·001). These data demonstrate that PMN, when activated, can both induce T-cell death and reversibly inhibit proliferation of activated T cells. The mechanisms underlying these distinct processes and the effects of arginase inhibitors on PMN induced cytotoxicity merit further investigation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Proliferation*
  • Cell Survival
  • Cells, Cultured
  • Coculture Techniques
  • Humans
  • Lymphocyte Activation
  • Neutrophils / cytology
  • Neutrophils / immunology*
  • T-Lymphocytes / cytology
  • T-Lymphocytes / immunology*