Monocyte activation on polyelectrolyte multilayers

J Biomater Sci Polym Ed. 2005;16(2):237-51. doi: 10.1163/1568562053115480.

Abstract

The adherence and activation of primary human monocytes was investigated on a polyelectrolyte multilayer film containing hyaluronic acid (HA) and poly-L-lysine (PLL). The sequential layer-by-layer deposition of the multilayer film was characterized by surface plasmon resonance. Eight alternating bilayers displayed an effective thickness of 16.15 nm with a total polymer coverage of 2.10 microg/cm2. For cell studies, HA-PLL multilayers were constructed on tissue culture polystyrene (TCPS) substrates and characterized by time of flight second ion mass spectrometry (ToF-SIMS) analysis. Principal component analysis of the ToF-SIMS spectra resolved no significant difference in surface chemistry between PLL-terminated and HA-terminated multilayer surfaces. Monocyte adhesion on PLL- and HA-terminated surfaces was measured by the lactate dehydrogenase assay and showed a significant decrease in cell adhesion after 24 h incubation. Cell viability measured by Live/Dead fluorescent staining showed significant cell death in the adherent cell population over these 24 h. Tumor necrosis factor-alpha (TNF-alpha) production, a measure of monocyte activation, was quantified by ELISA and normalized to the number of adherent monocytes. The activation of monocytes on PLL-terminated and HA-terminated surfaces was nearly identical, and both surfaces had TNF-alpha levels that were 8-fold higher than TCPS. These results demonstrate that sufficient PLL had diffused into the surface layer to direct monocyte adherence and to induce cytokine activation and cell death on the HA-terminated multilayer films. The diffusion of the second multilayer component to the coating surface should, thus, be taken into account in the design of polyelectrolyte-based biomaterial coating strategies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Adhesion
  • Cell Survival
  • Enzyme-Linked Immunosorbent Assay
  • Humans
  • Hyaluronic Acid / chemistry*
  • In Vitro Techniques
  • L-Lactate Dehydrogenase / metabolism
  • Lymphocyte Activation*
  • Mass Spectrometry
  • Monocytes / physiology*
  • Polylysine / chemistry*
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Tumor Necrosis Factor-alpha
  • Polylysine
  • Hyaluronic Acid
  • L-Lactate Dehydrogenase