Skip to main content
Log in

Efficacy and Safety of Mycophenolate Mofetil versus Cyclophosphamide for Induction Therapy of Lupus Nephritis

A Meta-Analysis of Randomized Controlled Trials

Drugs Aims and scope Submit manuscript

Abstract

Introduction: Whether mycophenolate mofetil is superior to cyclophosphamide as induction therapy for lupus nephritis (LN) remains controversial.

Objective: Our objective was to investigate the efficacy and safety of mycophenolate mofetil compared with cyclophosphamide as induction therapy for LN patients.

Methods: Randomized controlled trials (RCTs) on humans were identified in searches of PubMed/MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials (all to 1 December 2011). Studies that compared the efficacy and safety between mycophenolate mofetil and cyclophosphamide as induction therapy in LN patients were selected.

Methodological quality of the included trials was assessed according to Cochrane criteria and Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. The fixed effects model was applied for pooling where there was no significant heterogeneity, otherwise the random effects model (Dersimonian and Laird method) was performed.

Results: Seven trials were identified, including 725 patients. The Dersimonian and Laird method was applied for renal remission in the presence of significant heterogeneity, and no statistically significant differences were distinguished between mycophenolate mofetil and cyclophosphamide. To explore the possible source of heterogeneity, meta-regression was performed. It was suggested that no obvious study- or patient-level factors could explain interstudy heterogeneity with statistical significance. Among all these factors, the mode of administration of cyclophosphamide could explain most of the heterogeneity, although the coefficient was insignificant. Therefore, we performed a sensitivity analysis by excluding the trial in which cyclophosphamide was administered orally instead of intravenously, which suggested that mycophenolate mofetil was more effective than intravenous cyclophosphamide for inducing complete remission (relative risk [RR] 1.72; 95% CI 1.17, 2.55; p = 0.006) and complete or partial remission (RR 1.18; 95% CI 1.04, 1.35; p = 0.01). In addition, mycophenolate mofetil was superior to cyclophosphamide for significantly reducing end-stage renal disease (ESRD) or death (RR 0.64; 95% CI 0.41,0.98; p = 0.04). For the safety comparison, lower risks of leukopenia, amenorrhoea and alopecia, and a higher risk of diarrhoea were found with mycophenolate mofetil. No statistical differences in infection and gastrointestinal symptoms were distinguished between mycophenolate mofetil and cyclophosphamide. The relatively small number and the open-label fashion of eligible RCTs may limit the value of our meta-analysis.

Conclusions: Mycophenolate mofetil is superior to intravenous cyclophosphamide for inducing renal remission, and has a significant advantage over cyclophosphamide for reducing ESRD or death. Furthermore, mycophenolate mofetil has lower risks of leukopenia, amenorrhoea and alopecia, but a higher risk of diarrhoea than cyclophosphamide. However, our conclusions need to be proved further in larger well designed trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Table II
Table III
Fig. 2
Fig. 3
Table IV

References

  1. Harley JB, Kelly JA, Kaufman KM. Unraveling the genetics of systemic lupus erythematosus. Springer Semin Immunopathol 2006 Oct; 28(2): 119–30

    Article  PubMed  CAS  Google Scholar 

  2. Cameron JS. Lupus nephritis. J Am Soc Nephrol 1999 Feb; 10(2): 413–24

    PubMed  CAS  Google Scholar 

  3. Cervera R, Khamashta MA, Font J, et al. Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1,000 patients. Medicine (Baltimore) 2003 Sep; 82(5): 299–308

    Article  Google Scholar 

  4. Bagavant H, Kalantarinia K, Scindia Y, et al. Novel therapeutic approaches to lupus glomerulonephritis: translating animal models to clinical practice. Am J Kidney Dis 2011 Mar; 57(3): 498–507

    Article  PubMed  CAS  Google Scholar 

  5. Navaneethan SD, Viswanathan G, Strippoli GF. Treatment options for proliferative lupus nephritis: an update of clinical trial evidence. Drugs 2008; 68(15): 2095–104

    Article  PubMed  CAS  Google Scholar 

  6. Petri M. Cyclophosphamide: new approaches for systemic lupus erythematosus. Lupus 2004; 13(5): 366–71

    Article  PubMed  CAS  Google Scholar 

  7. Fulton B, Markham A. Mycophenolate mofetil: a review of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in renal transplantation. Drugs 1996 Feb; 51(2): 278–98

    Article  PubMed  CAS  Google Scholar 

  8. Snell GI, Westall GP. Immunosuppression for lung transplantation: evidence to date. Drugs 2007; 67(11): 1531–9

    Article  PubMed  CAS  Google Scholar 

  9. Appel A, Appel G. An update on the use of mycophenolate mofetil in lupus nephritis and other primary glomerular diseases. Nat Clin Pract Nephrol 2009 Mar; 5(3): 132–42

    Article  PubMed  CAS  Google Scholar 

  10. Quaglia M, Stratta P. Idiopathic membranous nephropathy: management strategies. Drugs 2009 Jul; 69(10): 1303–17

    Article  PubMed  CAS  Google Scholar 

  11. Li X, Ren H, Zhang Q, et al. Mycophenolate mofetil or tacrolimus compared with intravenous cyclophosphamide in the induction treatment for active lupus nephritis. Nephrol Dial Transplant 2012 Apr; 27(4): 1467–72

    Article  PubMed  CAS  Google Scholar 

  12. El-Shafey EM, Abdou SH, Shareef MM. Is mycophenolate mofetil superior to pulse intravenous cyclophosphamide for induction therapy of proliferative lupus nephritis in Egyptian patients? Clin Exp Nephrol 2010 Jun; 14(3): 214–21

    Article  PubMed  CAS  Google Scholar 

  13. Appel GB, Contreras G, Dooley MA, et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol 2009 May; 20(5): 1103–12

    Article  PubMed  CAS  Google Scholar 

  14. Wang J, Hu W, Xie H, et al. Induction therapies for class IV lupus nephritis with non-inflammatory necrotizing vasculopathy: mycophenolate mofetil or intravenous cyclophosphamide. Lupus 2007; 16(9): 707–12

    Article  PubMed  Google Scholar 

  15. Ginzler EM, Dooley MA, Aranow C, et al. Mycophenolate mofetil or intravenous cyclophosphamide for lupus nephritis. N Engl J Med 2005 Nov; 353(21): 2219–28

    Article  PubMed  CAS  Google Scholar 

  16. Ong LM, Hooi LS, Lim TO, et al. Randomized controlled trial of pulse intravenous cyclophosphamide versus mycophenolate mofetil in the induction therapy of proliferative lupus nephritis. Nephrology 2005 Oct; 10(5): 504–10

    Article  PubMed  CAS  Google Scholar 

  17. Chan TM, Tse KC, Tang CS, et al. Long-term study of mycophenolate mofetil as continuous induction and maintenance treatment for diffuse proliferative lupus nephritis. J Am Soc Nephrol 2005 Apr; 16(4): 1076–84

    Article  PubMed  CAS  Google Scholar 

  18. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions, version 5.0.1 [updated September 2008]. The Cochrane Collaboration, 2008 [online]. Available from URL: http://www.cochrane-handbook.org. [Accessed 2010 Mar 1]

  19. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009 Jul; 339: b2535

    Article  PubMed  Google Scholar 

  20. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986 Sep; 7(3): 177–88

    Article  PubMed  CAS  Google Scholar 

  21. Weening JJ, D’Agati VD, Schwartz MM, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol 2004 Feb; 15(2): 241–50

    Article  PubMed  Google Scholar 

  22. Houssiau FA. Cyclophosphamide in lupus nephritis. Lupus 2005; 14(1): 53–8

    Article  PubMed  CAS  Google Scholar 

  23. Bomback AS, Appel GB. Updates on the treatment of lupus nephritis. J Am Soc Nephrol 2010; 21(12): 2028–35

    Article  PubMed  CAS  Google Scholar 

  24. Mok CC, Ying KY, Ng WL, et al. Long-term outcome of diffuse proliferative lupus glomerulonephritis treated with cyclophosphamide. Am J Med 2006 Apr; 119(4): 355.e25–33

    Article  Google Scholar 

  25. Moore RA, Derry S. Systematic review and meta-analysis of randomised trials and cohort studies of mycophenolate mofetil in lupus nephritis. Arthritis Res Ther 2006; 8(6): R182

    Article  PubMed  Google Scholar 

  26. Walsh M, James M, Jayne D, et al. Mycophenolate mofetil for induction therapy of lupus nephritis: a systematic review and meta-analysis. Clin J Am Soc Nephrol 2007 Sep; 2(5): 968–75

    Article  PubMed  CAS  Google Scholar 

  27. Zhu B, Chen N, Lin Y, et al. Mycophenolate mofetil in induction and maintenance therapy of severe lupus nephritis: a meta-analysis of randomized controlled trials. Nephrol Dial Transplant 2007 Jul; 22(7): 1933–42

    Article  PubMed  CAS  Google Scholar 

  28. Touma Z, Gladman DD, Urowitz MB, et al. Mycophenolate mofetil for induction treatment of lupus nephritis: a systematic review and metaanalysis. J Rheumatol 2011 Jan; 38(1): 69–78

    Article  PubMed  CAS  Google Scholar 

  29. Mak A, Cheak AA, Tan JY, et al. Mycophenolate mofetil is as efficacious as, but safer than, cyclophosphamide in the treatment of proliferative lupus nephritis: a meta-analysis and meta-regression. Rheumatology (Oxford) 2009 Aug; 48(8): 944–52

    Article  CAS  Google Scholar 

  30. Kamanamool N, McEvoy M, Attia J, et al. Efficacy and adverse events of mycophenolate mofetil versus cyclophosphamide for induction therapy of lupus nephritis: systematic review and meta-analysis. Medicine (Baltimore) 2010 Jul; 89(4): 227–35

    Article  CAS  Google Scholar 

  31. Ting RZ, Luk AO, Chan JC. Treatment and landmark clinical trials for renoprotection. Contrib Nephrol 2011; 170: 184–95

    Article  PubMed  CAS  Google Scholar 

  32. Sánchez RA, Traballi CA, Marcó EJ, et al. Effects of ACE inhibition on renal haemodynamics in essential hypertension and hypertension associated with chronic renal failure. Drugs 1991; 41 Suppl. 1: 25–30

    Article  PubMed  Google Scholar 

  33. Wenzel RR. Renal protection in hypertensive patients: selection of antihypertensive therapy. Drugs 2005; 65 Suppl. 2: 29–39

    PubMed  CAS  Google Scholar 

  34. Boumpas DT, Balow JE. Outcome criteria for lupus nephritis trials: a critical overview. Lupus 1998; 7(9): 622–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundations of China (Grant No. 30170438, 30600541 and 30571701). None of the authors has any conflicts of interest associated with the work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-ning Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Ll., Jiang, Y., Wang, Ln. et al. Efficacy and Safety of Mycophenolate Mofetil versus Cyclophosphamide for Induction Therapy of Lupus Nephritis. Drugs 72, 1521–1533 (2012). https://doi.org/10.2165/11635030-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11635030-000000000-00000

Keywords

Navigation