Skip to main content

Advertisement

Log in

Exercise, Vascular Wall and Cardiovascular Diseases

An Update (Part 2)

  • Review Article
  • Exercise and Cardiovascular Health (Part 2)
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

There is much evidence extolling the virtues of physical activity on cardiovascular disease (CVD). The evidence derives from different population groups where leisure time physical activity reduced the risk of coronary heart disease and cardiovascular mortality in both men and women. Recent metaanalyses have shown that large risk reductions for both ischaemic and haemorrhagic stroke can be achieved by moderate or intense physical activity. There are many data from human and animal studies confirming a beneficial role for exercise in the prevention and treatment of CVD. Physical inactivity and obesity/overweight are not only associated with a number of healthrelated risk factors, but are considered to be independent risk factors forCVD, type 2 diabetes mellitus and hypertension. Clinical trials confirm that lifestyle interventions (dietary modification and increased physical activity) reduce the risk of progressing from impaired glucose tolerance to type 2 diabetes. Moreover, epidemiological studies indicate that the risk of hypertension increases by being overweight. Modest increases in exercise intensity and frequency have hypotensive effects in sedentary hypertensive patients. Longterm training improves endothelium-dependent dilatation in the aorta and resistance arteries of the heart, whereas short-term training increases endothelial function in coronary conduit arteries. Overall, more scientific evidence will undoubtedly encourage the widespread advocacy of the clinical benefits of exercise therapy in the prevention and treatment of CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Reference

  1. Bensimhon DR, Kraus WE, Donahue MP. Obesity and physical activity: a review. Am Heart J 2006; 151: 598–603

    Article  PubMed  Google Scholar 

  2. Wendel-Vos GC, Schuit AJ, Feskens EJ, et al. Physical activity and stroke: a meta-analysis of observational data. Int J Epidemiol 2004; 33: 787–98

    Article  PubMed  CAS  Google Scholar 

  3. Sacco RL, Gan R, Boden-Albala B, et al. Leisure-time physical activity and ischemic stroke risk: the Northern Manhattan Stroke Study. Stroke 1998; 29: 380–7

    Article  PubMed  CAS  Google Scholar 

  4. Gillum RF. New considerations in analyzing stroke and heart disease mortality trends: the Year 2000 Age Standard and the International Statistical Classification of Diseases and Related Health Problems, 10th Revision. Stroke 2002; 33: 1717–21

    Article  PubMed  CAS  Google Scholar 

  5. Berlin JA, Colditz GA. A meta-analysis of physical activity in the prevention of coronary heart disease. Am J Epidemiol 1990; 132: 612–28

    PubMed  CAS  Google Scholar 

  6. Hakim AA, Petrovitch H, Burchfiel CM, et al. Effects of walking on mortality among nonsmoking retired men. N Engl J Med 1998; 338: 94–9

    Article  PubMed  CAS  Google Scholar 

  7. Manson JE, Greenland P, LaCroix AZ, et al. Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N Engl JMed 2002; 347: 716–25

    Article  Google Scholar 

  8. Probsfield JL. How cost-effective are new preventive strategies for cardiovascular disease. Am J Cardiol 2003; 91: 22G–27G

    Article  Google Scholar 

  9. Green DJ, Maiorana A, O’Driscoll G, et al. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol 2004; 561: 1–25

    Article  PubMed  CAS  Google Scholar 

  10. Wilson S, Johnston A, Robson J, et al. Predicting coronary risk in the general population: is it necessary to measure high-density lipoprotein cholesterol? J Cardiovasc Risk 2003; 10: 137–41

    Article  PubMed  Google Scholar 

  11. Navas-Nacher EL, Colangelo L, Beam C, et al. Risk factors for coronary heart disease in men 18 to 39 years of age. Ann Intern Med 2001; 134: 433–9

    PubMed  CAS  Google Scholar 

  12. Williams SV, Fihn SD, Gibbons RJ. American College of Cardiology; American Heart Association; American College of Physicians-American Society of Internal Medicine. Guidelines for the management of patients with chronic stable angina: diagnosis and risk stratification. Ann Intern Med 2001; 135: 530–47

    PubMed  CAS  Google Scholar 

  13. Scrutinio D, Bellotto F, Lagioia R, et al. Physical activity for coronary heart disease: cardioprotective mechanisms and effects on prognosis. Monaldi Arch Chest Dis 2005; 64: 77–87

    PubMed  Google Scholar 

  14. Bowles DK, Wamhoff BR. Coronary smooth muscle adaptation to exercise: does it play a role in cardioprotection? Acta Physiol Scand 2003; 178: 117–21

    Article  PubMed  CAS  Google Scholar 

  15. Linke A, Erbs S, Hambrecht R. Exercise and the coronary circulation-alterations and adaptations in coronary artery disease. Prog Cardiovasc Dis 2006; 48: 270–84

    Article  PubMed  CAS  Google Scholar 

  16. Kwaijtaal M, van Diest R, Bär FW, et al. Inflammatory markers predict late cardiac events in patients who are exhausted after percutaneous coronary intervention. Atherosclerosis 2005; 182: 341–8

    Article  PubMed  CAS  Google Scholar 

  17. Schumacher A, Peersen K, Sommervoll L, et al. Physical performance is associated with markers of vascular inflammation in patients with coronary heart disease. Eur J Cardiovasc Prev Rehabil 2006; 13: 356–62

    Article  PubMed  Google Scholar 

  18. Peschel T, Sixt S, Beitz F, et al. High, but not moderate frequency and duration of exercise training induces downregulation of the expression of inflammatory and atherogenic adhesion molecules. Eur J Cardiovasc Prev Rehabil 2007; 14: 476–82

    Article  PubMed  Google Scholar 

  19. Wisløff UStøylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 2007; 115: 3086–94

    Article  Google Scholar 

  20. Yamashita N, Hoshida S, Otsu K, et al. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med 1999; 189: 1699–706

    Article  PubMed  CAS  Google Scholar 

  21. Sesso HD, Paffenbarger Jr RS, Lee IM. Physical activity and coronary heart disease in men: the Harvard Alumni Health Study. Circulation 2000; 102: 975–80

    Article  PubMed  CAS  Google Scholar 

  22. Henrion D. Pressure and flow-dependent tone in resistance arteries: role of myogenic tone. Arch Mal Coeur Vaiss 2005; 98: 913–21

    PubMed  CAS  Google Scholar 

  23. Farsidfar F, Kasikcioglu E, Oflaz H, et al. Effects of different intensities of acute exercise on flow-mediated dilatation in patients with coronary heart disease. Int J Cardiol 2008; 124: 372–4

    Article  PubMed  Google Scholar 

  24. Osborn DP, Nazareth I, King MB. Physical activity, dietary habits and coronary heart disease risk factor knowledge amongst people with severe mental illness: a cross sectional comparative study in primary care. Soc Psychiatry Psychiatr Epidemiol 2007; 42: 787–93

    Article  PubMed  Google Scholar 

  25. Steinbaum SR. The metabolic syndrome: an emerging health epidemic in women. Prog Cardiovasc Dis 2004; 46: 321–36

    Article  PubMed  Google Scholar 

  26. World Health Organization. Definition diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation, part 1: diagnosis and classification of diabetes mellitus, Department of Noncommunicable Disease Surveillance. Geneva: World Health Organization, 1999 (WHO/NCD/NSD/99.2); 1–55

    Google Scholar 

  27. Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults, Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–97

    Google Scholar 

  28. Aguilar-Salinas CA, Rojas R, Gómez-Pérez FJ, et al. High prevalence of metabolic syndrome in Mexico. Arch Med Res 2004; 35: 76–81

    Article  PubMed  Google Scholar 

  29. Ilanne-Parikka P, Eriksson JG, Lindström J, et al. Finnish Diabetes Prevention Study Group. Prevalence of the metabolic syndrome and its components: findings from a Finnish general population sample and the diabetes prevention study cohort. Diabetes Care 2004; 27: 2135–40

    Article  PubMed  Google Scholar 

  30. Lawlor DA, Ebrahim S, Davey Smith G. The metabolic syndrome and coronary heart disease in older women: findings from the British Women’s Heart and Health Study. Diabet Med 2004; 21: 906–13

    Article  PubMed  CAS  Google Scholar 

  31. Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002; 288: 2709–16

    Article  PubMed  Google Scholar 

  32. Onat A, Ceyhan K, Basar O, et al. Metabolic syndrome: major impact on coronary risk in a population with low cholesterol levels: a prospective and cross-sectional evaluation. Atherosclerosis 2002; 165: 285–92

    Article  PubMed  CAS  Google Scholar 

  33. Resnick HE, Jones K, Ruotolo G, et al. Strong Heart Study. Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease in nondiabetic American Indians: the Strong Heart Study. Diabetes Care 2003; 26: 861–7

    Article  PubMed  Google Scholar 

  34. Laaksonen DE, Lakka HM, Niskanen LK, et al. Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am J Epidemiol 2002;156: 1070–7

    Article  PubMed  Google Scholar 

  35. Liese A Mayer-Davis EJ, Tyroler HA, et al. Development of the multiple metabolic syndrome in the ARIC cohort: Joint contribution of insulin BMI and WHR — atherosclerosis risk in communities. Ann Epidemiol 1997; 7: 407–16

    Article  PubMed  CAS  Google Scholar 

  36. Carroll S, Dudfield M. What is the relationship between exercise and metabolic abnormalities? A review of the metabolic syndrome. Sports Med 2004; 34: 371–418

    Article  PubMed  Google Scholar 

  37. Ford ES, Kohl HW 3rd, Mokdad AH, et al. Sedentary behavior, physical activity, and the metabolic syndrome among U.S. adults. Obes Res 2005; 13: 608–14

    Article  PubMed  Google Scholar 

  38. Rennie KL, McCarthy N, Yazdgerdi S, et al. Association of the metabolic syndrome with both vigorous and moderate physical activity. Int J Epidemiol 2003; 32: 600–6

    Article  PubMed  CAS  Google Scholar 

  39. Halldin M, Rosell M, de Faire U, et al. The metabolic syndrome: prevalence and association to leisure-time and work-related physical activity in 60-year-old men and women. Nutr Metab Cardiovasc Dis 2007; 17: 349–57

    Article  PubMed  CAS  Google Scholar 

  40. Yan ZC, Liu DY, Zhang LL, et al. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta. Biochem Biophys Res Commun 2007; 354: 427–33

    Article  PubMed  CAS  Google Scholar 

  41. Kakafika AI, Mikhailidis DP, Karagiannis A, et al. The role of endocannabinoid system blockade in the treatment of the metabolic syndrome. J Clin Pharmacol 2007; 47: 642–52

    Article  PubMed  CAS  Google Scholar 

  42. Frisbee JC, Samora JB, Peterson J, et al. Exercise training blunts microvascular rarefaction in the metabolic syndrome. Am J Physiol Heart Circ Physiol 2006; 291: 2483–92

    Article  CAS  Google Scholar 

  43. Kurth T, Moore SC, Gazoiano JM, et al. Healthy lifestyle and the risk of stroke in women. Arch Intern Med 2006; 166: 1403–9

    Article  PubMed  Google Scholar 

  44. Lee IM, Hennekens CH, Berger K, et al. Exercise and risk of stroke in male physicians. Stroke 1999; 30: 1–6

    Article  PubMed  CAS  Google Scholar 

  45. Hu G, Sarti C, Jousilahti P, et al. Leisure time, occupational, and commuting physical activity and the risk of stroke. Stroke 2005; 36: 1994–9

    Article  PubMed  Google Scholar 

  46. Endres M, Gertz K, Lindauer U, et al. Mechanisms of stroke protection by physical activity. Ann Neurol 2003; 54: 582–90

    Article  PubMed  Google Scholar 

  47. Ding YH, Young CN, Luan 2nd X, et al. Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta Neuropathol (Berl) 2005; 109: 237–46

    Article  CAS  Google Scholar 

  48. Yang YR, Wang RY, Wang PS. Early and late treadmill training after focal brain ischemia in rats. Neurosci Lett 2003; 339: 91–4

    Article  PubMed  CAS  Google Scholar 

  49. Hu G, Lakka TA, Kilpelainen TO, et al. Epidemiological studies of exercise in diabetes prevention. Appl Physiol Nutri Metab 2007; 32: 583–95

    Article  Google Scholar 

  50. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782–7

    Article  PubMed  CAS  Google Scholar 

  51. Gill JM, Malkova D. Physical activity, fitness and cardiovascular disease risk in adults: interactions with insulin resistance and obesity. Clin Sci 2006; 110: 409–25

    Article  PubMed  CAS  Google Scholar 

  52. Betteridge DJ. The interplay of cardiovascular risk factors in the metabolic syndrome and type 2 diabetes. Eur Heart J Suppl 2004; 6: G3–7

    Article  Google Scholar 

  53. Tanasescu M, Leitzmann MF, Rimm EB, et al. Physical activity in relation to cardiovascular disease and total mortality among men with type 2 diabetes. Circulation 2003; 107: 2435–9

    Article  PubMed  Google Scholar 

  54. Apetrei E, Ciobanu R. Relationship between diabetes and at herosclerosis: the role of inflammation. In: Cheta D, editor. Vascular involvement in diabetes: clinical, experimental and beyond. Bucharest: SKarger AG, 2005: 179–90

    Google Scholar 

  55. Hu F. Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes (epidemiology/health services/psychological research). Diabetes Care 2002; 25: 1129–34

    Article  PubMed  Google Scholar 

  56. Bassuk SS, Manson JE. Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J Appl Physiol 2005; 99: 1193–204

    Article  PubMed  Google Scholar 

  57. Zuanetti G, Latini R, Maggioni AP, et al. Influence of diabetes on mortality in acute myocardial infarction: data from the GISSI-2 study. J Am Coll Cardiol 1993; 22: 1788–94

    Article  PubMed  CAS  Google Scholar 

  58. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003; 348: 383–93

    Article  PubMed  Google Scholar 

  59. Gregg EW, Gerzoff RB, Thompson TJ, et al. Trying to lose weight, losing weight, and 9-year mortality in overweight US adults with diabetes. Diabetes Care 2004; 27: 657–62

    Article  PubMed  Google Scholar 

  60. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl JMed 2001; 344: 1343–50

    Article  CAS  Google Scholar 

  61. Knowler WC, Barrett-Connor E, Fowler SE, et al. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393–403

    Article  PubMed  CAS  Google Scholar 

  62. Fujita H, Fujishima H, Morii T, et al. Effect of metformin on adipose tissue resistin expression in db/db mice. Biochem Biophys Res Commun 2002; 298: 345–9

    Article  PubMed  CAS  Google Scholar 

  63. Klein S, Sheard NF, Pi-Sunyer X, et al. Weight management through life-style modification for the prevention and management of type 2 diabetes: rationale and strategies: a statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. Diabetes Care 2004; 27: 2067–73

    Article  PubMed  Google Scholar 

  64. Buysschaert M, Hermans MP. Non-pharmacological management of type 2 diabetes. Acta Clin Belg 2004; 59: 14–9

    PubMed  CAS  Google Scholar 

  65. Ivy JL, Zderic TW, Fogt DL. Prevention and treatment of non-insulin-dependent diabetes mellitus. Exerc Sport Sci Rev 1999; 7: 1–35

    Google Scholar 

  66. Boule NG, Haddad E Kenny GP, et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 2001; 286: 1218–27

    Article  PubMed  CAS  Google Scholar 

  67. Church TS, Cheng YJ, Earnest CP, et al. Exercise capacity and body composition as predictors of mortality among men with diabetes. Diabetes Care 2004; 27: 83–8

    Article  PubMed  Google Scholar 

  68. Hu FB, Stampfer MJ, Solomon C, et al. Physical activity and risk for cardiovascular events in diabetes women. Ann Intern Med 2001; 134: 96–105

    PubMed  CAS  Google Scholar 

  69. Wing RR, Goldstein MG, Acton KJ, et al. Behavioral science research in diabetes: lifestyle changes related to obesity, eating behavior, and physical activity. Diabetes Care 2001; 24: 117–23

    Article  PubMed  CAS  Google Scholar 

  70. Diamond J. The double puzzle of diabetes. Nature 2003; 423: 599–602

    Article  PubMed  CAS  Google Scholar 

  71. Sato Y, Nagasaki M, Kubota M, et al. Clinical aspects of physical exercise for diabetes/metabolic syndrome. Diabetes Res Clin Pract 2007; 77 Suppl. 1: 87–91

    Article  Google Scholar 

  72. Hu G, Lakka TA, Kilpeläinen TO, et al. Epidemiological studies of exercise in diabetes prevention. Appl Physiol Nutr Metab 2007; 32: 583–95

    Article  PubMed  Google Scholar 

  73. Baum K, Votteler T, Schiab J. Efficiency of vibration exercise for glycemic control in type 2 diabetes patients. Int J Med Sci 2007; 4: 159–63

    Article  PubMed  CAS  Google Scholar 

  74. Desouza CA, Shapiro LF, Clevenger CM, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 2000; 102: 1351–7

    Article  PubMed  CAS  Google Scholar 

  75. Taddei S, Galetta F, Virdis A, et al. Physical activity prevents age-related impairment in nitric oxide availability in elderly athletes. Circulation 2000; 101: 2896–901

    Article  PubMed  CAS  Google Scholar 

  76. Ji LL. Exercise at old age: does it increase or alleviate oxidative stress? Ann N Y Acad Sci 2001; 928: 236–47

    Article  PubMed  CAS  Google Scholar 

  77. Schriner SE, Linford NJ, Martin GM, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005; 308: 1909–11

    Article  PubMed  CAS  Google Scholar 

  78. Ji LL. Exercise-induced modulation of antioxidant defense. Ann N Y Acad Sci 2002; 959: 82–92

    Article  PubMed  CAS  Google Scholar 

  79. Ji LL, Gomez-Cabrera MC, Vina J. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann N Y Acad Sci 2006; 1067: 425–35

    Article  PubMed  CAS  Google Scholar 

  80. Franzoni F, Plantinga Y, Femia FR, et al. Plasma antioxidant activity and cutaneous microvascular endothelial function in athletes and sedentary controls. Biomed Pharmacother 2004; 58: 432–6

    PubMed  CAS  Google Scholar 

  81. Fanzoni F, Ghiadoni L, Galetta F, et al. Physical activity, plasma antioxidant capacity, and endothelium-dependent vasodilation in young and older men. Am J Hypertens 2005; 18: 510–6

    Article  CAS  Google Scholar 

  82. Fang ZY, Marwick TH. Vascular dysfunction and heart failure: epiphenomenon or etiologic agent? Am Heart J 2002; 143: 383–90

    Article  PubMed  CAS  Google Scholar 

  83. McEniery CM, Wilkinson IB, Jenkins DG, et al. Endogenous endothelin-;1 limits exercise-induced vasodilation in hypertensive humans. Hypertension 2002; 40: 202–6

    Article  PubMed  CAS  Google Scholar 

  84. Donato AJ, Lesniewski LA, Delp MD. The effects of aging and exercise training on endothelin-;1 vasoconstrictor responses in rat skeletal muscle arterioles. Cardiovasc Res 2005; 66: 393–401

    Article  PubMed  CAS  Google Scholar 

  85. Kwak HB, Song W, Lawler JM. Exercise training attenuates age-induced elevation in Bax/Bcl-;2 ratio, apoptosis, and remodeling in the rat heart. FASEB J 2006; 20: 791–3

    PubMed  CAS  Google Scholar 

  86. Quindry J, French J, Hamilton K, et al. Exercise training provides cardioprotection against ischemia-reperfusion induced apoptosis in young and old animals. Exp Gerontol 2005; 40: 416–25

    Article  PubMed  CAS  Google Scholar 

  87. Galetta F, Franzoni F, Femia FR, et al. Lifelong physical training prevents the age-related impairment of heart rate variability and exercise capacity in elderly people. J Sports Med Phys Fitness 2005; 45: 217–21

    PubMed  CAS  Google Scholar 

  88. Stewart A, Noakes T, Eales C, et al. Adherence to cardiovascular risk factor modification in patients with hypertension. Cardiovasc J S Afr 2005; 16: 102–7

    PubMed  CAS  Google Scholar 

  89. Burke V, Beilin LJ, Cutt HE, et al. A lifestyle program for treated hypertensives improved health-related behaviors and cardiovascular risk factors, a randomized controlled trial. J Clin Epidemiol 2007; 60: 133–41

    Article  PubMed  Google Scholar 

  90. Fagard RH, Cornelissen VA. Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil 2007; 14:12–7

    Article  PubMed  Google Scholar 

  91. Staffileno BA, Minnick A, Coke LA, et al. Blood pressure responses to lifestyle physical activity among young, hypertension- prone African-American women. J Cardiovasc Nurs 2007; 22: 107–17

    PubMed  Google Scholar 

  92. Hagberg JM, Park JJ, Brown MD. The role of exercise training in the treatment of hypertension: an update. The role of exercise training in the treatment of hypertension: an update. Sports Med 2000; 30: 193–206

    Article  PubMed  CAS  Google Scholar 

  93. Pinto A, Di Raimondo D, Domenico MD, et al. Twentyfour hour ambulatory blood pressure monitoring to evaluate effects on blood pressure of physical activity in hypertensive patients. Clin J Sport Med 2006; 16: 238–43

    Article  PubMed  Google Scholar 

  94. Kohno M, Yasunari K, Yokokawa K, et al. Plasma brain natriuretic peptide during erogmetric exercise in hypertensive patients with left ventricular hypertrophy. Metabolism 1996; 45: 1326–9

    Article  PubMed  CAS  Google Scholar 

  95. Higashi Y, Sasaki S, Kurisu S, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium- derived nitric oxide. Circulation 1999; 100: 1194–202

    Article  PubMed  CAS  Google Scholar 

  96. Chen HI, Chiang IP. Chronic exercise decreases adrenergic agonist-induced vasoconstriction in spontaneously hypertensive rats. Am J Physiol 1996; 271: 977–83

    Google Scholar 

  97. Boissiere J, Lemaire MC, Antier D, et al. Exercise and vasorelaxing effects of CO-releasing molecules in hypertensive rats. Med Sci Sports Exerc 2006; 38: 652–9

    Article  PubMed  CAS  Google Scholar 

  98. Zhang J, Ren CX, Qi YF, et al. Exercise training promotes expression of apelin and APJ of cardiovascular tissues in spontaneously hypertensive rats. Life Sci 2006; 79: 1153–9

    Article  PubMed  CAS  Google Scholar 

  99. Cornelissen VA, Fagard RH.Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 2005; 46: 667–75

    Article  PubMed  CAS  Google Scholar 

  100. Cox KL. Exercise and blood pressure: applying findings from the laboratory to the community setting. Clin Exp Pharmacol Physiol 2006; 33: 868–71

    Article  PubMed  CAS  Google Scholar 

  101. Shaw LJ, Miller DD, Romeis JC, et al. Gender differences in the noninvasive evaluation and management of patients with suspected coronary artery disease. Ann Intern Med 1994; 120: 559–66

    PubMed  CAS  Google Scholar 

  102. Wenger NK, Speroff L, Packard B. Cardiovascular health and disease in women. N Engl J Med 1993; 329: 247–56

    Article  PubMed  CAS  Google Scholar 

  103. Beitz R, Dören M. Physical activity and postmenopausal health. J British Menopause Society 2004; 10: 70–4

    Article  Google Scholar 

  104. Sugawara J, Otsuki T, Tanabe T, et al. Physical activity duration, intensity, and arterial stiffening in postmenopausal women. Am J Hypertens 2006; 19: 1032–6

    Article  PubMed  Google Scholar 

  105. Moreau KL, Donato AJ, Seals DR, et al. Regular exercise, hormone replacement therapy and the age-related decline in carotid arterial compliance in healthy women. Cardiovasc Res 2003; 57: 861–8

    Article  PubMed  CAS  Google Scholar 

  106. Harvey PJ, Picton PE, Su WS, et al. Exercise as an alternative to oral estrogen for amelioration of endothelial dysfunction in postmenopausal women. Am Heart J 2005; 149: 291–7

    Article  PubMed  Google Scholar 

  107. Irigoyen MC, Paulini J, Flores LJ, et al. Exercise training improves baroreflex sensitivity associated with oxidative stress reduction in ovariectomized rats. Hypertension 2005; 46: 998–1003

    Article  PubMed  CAS  Google Scholar 

  108. Church TS, Earnest CP, Skinner JS, et al. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA 2007; 297: 2081–91

    Article  PubMed  CAS  Google Scholar 

  109. Wilson PWF, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97: 1837–47

    Article  PubMed  CAS  Google Scholar 

  110. Kuller LH, Kinzel LS, Pettee KK, et al. Lifestyle intervention and coronary heart disease risk factor changes over 18 months in postmenopausal women: the Women On the Move through Activity and Nutrition (WOMAN study) clinical trial. J Womens Health (Larchmt) 2006; 5: 962–74

    Article  Google Scholar 

  111. Bupha-Intr T, Wattanapermpool J. Cardioprotective effects of exercise training on myofilament calcium activation in ovariectomized rats. J Appl Physiol 2004; 96: 1755–60

    Article  PubMed  CAS  Google Scholar 

  112. Rivet C. What type of exercise prevents cardiovascular disease in postmenopausal women? CMAJ 2003; 168: 314

    PubMed  Google Scholar 

  113. Sugawara J, Inoue H, Hayashi K, et al. Effect of low-intensity aerobic exercise training on arterial compliance in postmenopause women. Hypertens Res 2004; 27: 897–901

    Article  PubMed  Google Scholar 

  114. Ribisl PM, Lang W, Jaramillo SA, et al., for the Look AHEAD Research Group. Exercise capacity and cardiovascular/ metabolic characteristics of overweight and obese individuals with type 2 diabetes. The Look AHEAD Study. Diabetes Care 2007; 30: 2679–84

    Article  PubMed  Google Scholar 

  115. Hu FB, Li TY, Colditz GA, et al. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA 2003; 289: 1785–91

    Article  PubMed  Google Scholar 

  116. de Vegt F, Dekker JM, Jager A, et al. Relation of impaired fasting and postload glucose with incident type 2 diabetes in a Dutch population: The Hoorn Study. JAMA 2001; 285: 2109–13

    Article  PubMed  Google Scholar 

  117. Tuomilehto J, Lindström J, Eriksson JG, et al., on behalf of the Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343–50

    Article  PubMed  CAS  Google Scholar 

  118. Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997; 20: 537–44

    Article  PubMed  CAS  Google Scholar 

  119. Hu G, Qiao Q, Tuomilehto J, et al., for the DECODE Study Group. Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women. Arch Intern Med 2004; 164: 1066–76

    Article  PubMed  Google Scholar 

  120. Hu G, Pekkarinen H, Hanninen O, et al. Relation between commuting, leisure time physical activity and serum lipids in a Chinese urban population. Ann Hum Biol 2001; 28: 412–21

    Article  PubMed  CAS  Google Scholar 

  121. Hu G, Pekkarinen H, Hanninen O, et al. Commuting, leisure- time physical activity, and cardiovascular risk factors in China. Med Sci Sports Exerc 2002; 34: 234–8

    Article  PubMed  Google Scholar 

  122. Hayashi T, Tsumura K, Suematsu C, et al. Walking to work and the risk for hypertension in men: the Osaka Health Survey. Ann Intern Med 1999; 131: 21–6

    PubMed  CAS  Google Scholar 

  123. Pereira MA, Folsom AR, McGovern PG, et al. Physical activity and incident hypertension in black and white adults: the Atherosclerosis Risk in Communities Study. Prev Med 1999; 28: 304–12

    Article  PubMed  CAS  Google Scholar 

  124. Haapanen N, Miilunpalo S, Pasanen M, et al. Association between leisure time physical activity and 10-year body mass change among working-aged men and women. Int J Obes Relat Metab Disord 1997; 21: 288–96

    Article  PubMed  CAS  Google Scholar 

  125. Blair SN, Goodyear NN, Gibbons LW, et al. Physical fitness and incidence of hypertension in healthy normotensive men and women. JAMA 1984; 252: 487–90

    Article  PubMed  CAS  Google Scholar 

  126. Paffenbarger Jr RS, Wing AL, Hyde RT, et al. Physical activity and incidence of hypertension in college alumni. Am J Epidemiol 1983; 117: 245–57

    PubMed  Google Scholar 

  127. Dyer AR, Elliott P. The INTERSALT study: relationsof body mass index to blood pressure. INTERSALT Cooperative Research Group. J Hum Hypertens 1989; 3: 299–308

    PubMed  CAS  Google Scholar 

  128. Hu G, Tuomilehto J, Silventoinen K, et al. Joint effects of physical activity, body mass index, waist circumference and waist-to-hip ratio with the risk of cardiovascular disease among middle-aged Finnish men and women. Eur Heart J 2004; 25: 2212–9

    Article  PubMed  Google Scholar 

  129. Wei M, Kampert JB, Barlow CE, et al. Relationship between low cardiorespiratory fitness and mortality in normal- weight, overweight, and obese men. JAMA 1999; 282: 1547–53

    Article  PubMed  CAS  Google Scholar 

  130. Hamet P, Pausova Z, Adarichev V, et al. Hypertension: genes and environment. J Hypertens 1998; 16: 397–418

    Article  PubMed  CAS  Google Scholar 

  131. Jousilahti P, Toumilehto J, Vartiainen E, et al. Importance of risk factor clustering in coronary heart disease mortality and incidence in eastern Finland. J Cardiovasc Risk 1995; 2: 63–70

    Article  PubMed  CAS  Google Scholar 

  132. Stevens J, Cai J, Evenson KR, et al. Fitness and fatness as predictors of mortality from all causes and from cardiovascular disease in men and women in the lipid research clinics study. Am J Epidemiol 2002; 156: 832–41

    Article  PubMed  Google Scholar 

  133. Tanasescu M, Leitzmann MF, Rimm EB, et al. Exercise type and intensity in relation to coronary heart disease in men. JAMA 2002; 288: 1994–2000

    Article  PubMed  Google Scholar 

  134. Manson JE, Hu FB, Rich-Edwards JW, et al. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N Engl J Med 1999; 341: 650–8

    Article  PubMed  CAS  Google Scholar 

  135. Fang J, Wylie-Rosett J, Cohen HW, et al. Exercise, body mass index, caloric intake, and cardiovascular mortality. Am J Prev Med 2003; 25: 283–9

    Article  PubMed  Google Scholar 

  136. Li TY, Rana JS, Manson JE, et al. Obesity as compared with physical activity in predicting risk of coronary heart disease in women. Circulation 2006;113: 499–506

    Article  PubMed  Google Scholar 

  137. Shipp KM. Exercise for people with osteoporosis: translating the science into clinical practice. Curr Osteoporos Rep 2006; 4: 129–33

    Article  PubMed  Google Scholar 

  138. Ishikawa-Takata K, Ohta T, Tanaka H. How much exercise is required to reduce blood pressure in essential hypertensives: a dose-response study. AmJ Hypertens 2003; 16: 629–33

    Article  Google Scholar 

  139. Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol 2006; 97: 141–7

    Article  PubMed  Google Scholar 

  140. Swain DP Franklin BA. VO(2) reserve and the minimal intensity for improving cardiorespiratory fitness. Med Sci Sports Exerc 2002; 34: 152–7

    Article  PubMed  Google Scholar 

  141. Podolin DA, Munger PA, Mazzeo RS. Plasma catecholamine and lactate response during graded exercise with varied glycogen conditions. J Appl Physiol 1991; 71: 1427–33

    PubMed  CAS  Google Scholar 

  142. Leung FP, Yung LM, Laher I, et al. Exercise, vascular wall and cardiovascular diseases: an update (Part 1). Sports Med 2008; 38(12): 1009–24

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr Jonathan Wanagat for his helpful comments and suggestions on this manuscript. This study was funded by CUHK Direct Grant (2041380), Research Grants Council of Hong Kong SAR, CUHK Li Ka Shing Institute of Health Sciences, CUHK Focused Investment Scheme, and the Canadian Heart and Stroke Foundation (IL). LMY and FPL were supported by these grants. The authors have no conflict of interest directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Huang or Fung Ping Leung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yung, L.M., Yung, M., Yao, X. et al. Exercise, Vascular Wall and Cardiovascular Diseases. sports med 39, 45–63 (2009). https://doi.org/10.2165/00007256-200939010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200939010-00004

Keywords

Navigation