Skip to main content
Log in

Clinical Pharmacokinetics in the 21st Century

Does the Evidence Support Definitive Outcomes?

  • Current Opinion
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Clinical pharmacokinetics emerged as a clinical discipline in the late 1960s and early 1970s. Clinical pharmacokinetic monitoring (CPM) helped many pharmacists to enter the clinical arena, but the focus was more on the pharmacists and tools. With the widespread acceptance of pharmaceutical care and patientfocused pharmacy, we now must take a sobering look at how clinical pharmacokinetics fits into the pharmaceutical care process.

The existing literature is laden with articles that evaluate the effect of CPM on surrogate end-points. Many pharmacists have also had personal experiences that attest to the usefulness of CPM. Decreased mortality, decreased length of treatment, decreased length of hospital stay, decreased morbidity, and decreased adverse effects from drug therapy have been examined in an effort to measure and evaluate the impact of CPM on patient outcomes. While many of these studies demonstrated significant positive outcomes, several showed that CPM did not have a significant impact on specific patient outcomes. A few studies even found a negative impact on specific patient outcomes. Ultimately, there is good evidence in only a few specific patient groups to support the benefit of CPM.

Despite the limitations of data supporting the routine use of CPM in managing drug therapy in diverse populations, many pharmacists continue to expend considerable time and effort in this activity. We need to define those patients who are most likely to benefit from CPM and incorporate this into our provision of pharmaceutical care, while minimising the time and money spent on CPM that provides no value.

In redefining the patients who will benefit from CPM, we need to critically re-evaluate clinical studies on the relationship between drug concentration and response. Similarly, we need to pay special attention to recent studies evaluating the impact of CPM on outcomes in specific subpopulations. In the absence of specific studies demonstrating the value of CPM in particular patients, we propose that a more comprehensive decision-making process be undertaken that culminates in the quintessential question: ‘Will the results of the drug assay make a significant difference in the clinical decision-making process and provide more information than sound clinical judgement alone?’ We also need to consider opportunities to expand the use of CPM for new drugs and where new evidence suggests benefit.

Even when there is strong evidence that CPM is useful in managing therapy in particular patient groups, clinicians need to remember that the therapeutic range is no more than a confidence interval and, therefore, we need to ‘treat the patient and not the level’. We need to incorporate the patient-specific and outcome-oriented principles of pharmaceutical care into our CPM, even as we utilise CPM as an essential tool in pharmaceutical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hepler CD, Strand LH. Opportunities and responsibilities in pharmaceutical care. Am J Hosp Pharm. 1990; 47: 533–43.

    PubMed  CAS  Google Scholar 

  2. Polk R. The unexamined life: antibiotic serum concentration monitoring and clinical pharmacy. J Infec Dis Pharmacother. 1995; 1: 3–24.

    Article  Google Scholar 

  3. Moellering Jr RC. Monitoring serum vancomycin levels: climbing the mountain because it is there [editorial]. Clin Infect Dis. 1994; 18: 544–6.

    Article  PubMed  Google Scholar 

  4. Burton ME, Brater C, Chen PS, et al. A Bayesian feedback method of aminoglycoside dosing. Clin Pharmacol Ther. 1985; 37: 349–57.

    Article  PubMed  CAS  Google Scholar 

  5. Vozeh S, Kewitz G, Perruchoud A, et al. Theophylline serum concentration and therapeutic effect in severe acute bronchial obstruction: the optimal use of intravenously administered theophylline. Am Rev Respir Dis. 1982; 125: 181–4.

    PubMed  CAS  Google Scholar 

  6. Vozeh S, Uematsu T, Schmidlin O, et al. Computer-assisted individualized lidocaine dosage: clinical evaluation and comparison with physician performance. Am Heart J. 1987; 113: 928–33.

    Article  PubMed  CAS  Google Scholar 

  7. Beardsley RS, Freeman JM, Appel FA. Anticonvulsant serum levels are useful only if the physician appropriately uses them: an assessment of the impact of providing serum level data to physicians. Epilepsia. 1983; 24: 330–5.

    Article  PubMed  CAS  Google Scholar 

  8. Whiting B, Kelman AW, Bryson SM, et al. Clinical pharmacokinetics: a comprehensive system for therapeutic drug monitoring and prescribing. BMJ. 1984; 288: 543–5.

    Article  Google Scholar 

  9. Mungall D, Marshall J, Penn D, et al. Individualized theophylline therapy: the impact of clinical pharmacokinetics on patient outcomes. Ther Drug Monit. 1983; 5: 95–101.

    Article  PubMed  CAS  Google Scholar 

  10. Donahue T, Dotter J, Alexander G, et al. Pharmacist based iv theophylline therapy. Hosp Pharm. 1989; 24: 442–60.

    Google Scholar 

  11. Hurley SF, Dziukas LJ, McNeill JJ, et al. A randomized controlled clinical trial of pharmacokinetic theophylline dosing. Am Rev Respir Dis. 1986; 134: 1219–24.

    PubMed  CAS  Google Scholar 

  12. Winter ME, Herfindal ET, Bernstein LR. Impact of decentralized pharmacokinetics consultation service. Am J Hosp Pharm. 1986; 43: 2178–84.

    PubMed  CAS  Google Scholar 

  13. Franson TR, Quebbeman EJ, Whipple J. Prospective comparison of traditional and pharmacokinetic aminoglycoside dosing methods. Crit Care Med. 1988; 16: 840–3.

    Article  PubMed  CAS  Google Scholar 

  14. Hoffa DE. Serial pharmacokinetic dosing of aminoglycosides: a community hospital experience. Ther Drug Monit. 1989; 11: 574–9.

    Article  PubMed  CAS  Google Scholar 

  15. Destache CJ, Meyer SK, Padomek MT. Impact of a clinical pharmacokinetic service on patients treated with aminoglycosides for gram-negative infections. Drug Intell Clin Pharm. 1989; 23: 33–8.

    CAS  Google Scholar 

  16. Horn JR, Christensen DB, deBlaquiere PA. Evaluation of a digoxin pharmacokinetic monitoring service in a community hospital. Drug Intell Clin Pharm. 1985; 19: 45–52.

    PubMed  CAS  Google Scholar 

  17. Ho KKL, Thiessen JJ, Bryson SM, et al. Challenges in comparing treatment outcome from a prospective with that of a retrospective study: assessing the merit of gentamicin therapeutic drug monitoring in pediatric oncology. Ther Drug Monit. 1994; 16: 238–47.

    Article  PubMed  CAS  Google Scholar 

  18. Bollish SJ, Kelly WN, Miller DE, et al. Establishing an aminoglycoside pharmacokinetic monitoring service in a community hospital. Am J Hosp Pharm. 1981; 38: 73–6.

    PubMed  CAS  Google Scholar 

  19. Michalko KJ, Blain L. An evaluation of a clinical pharmacokinetic service for serum digoxin levels. Ther Drug Monit. 1987; 9: 311–9.

    Article  PubMed  CAS  Google Scholar 

  20. Wing DS, Duff HJ. Evaluation of a therapeutic drug monitoring program for theophylline in a teaching hospital. Drug Intell Clin Pharm. 1987; 21: 702–6.

    PubMed  CAS  Google Scholar 

  21. Job ML, Ward ES, Murphy JE. Seven years of experience with a pharmacokinetic service. Hosp Pharm. 1989; 24: 512–9, 26.

    PubMed  CAS  Google Scholar 

  22. McLean W, Lalonde R, Roy M. The history of a comprehensive pharmacokinetic service. Can J Hosp Pharm. 1989; 42: 223–8.

    PubMed  CAS  Google Scholar 

  23. Ried LD, McKenna DA, Horn JR. Meta-analysis of research on the effect of clinical pharmacokinetics services on therapeutic drug monitoring. Am J Hosp Pharm. 1989; 46: 945–51.

    PubMed  CAS  Google Scholar 

  24. Wing DS, Duff HJ. The impact of a therapeutic drug monitoring program for phenytoin. Ther Drug Monit. 1989; 11: 32–7.

    Article  PubMed  CAS  Google Scholar 

  25. Dager WE, Albertson TE. Impact of therapeutic drug monitoring of intravenous theophylline regimens on serum theophylline concentrations in the medical intensive care unit. Ann Pharmacother. 1992; 26: 1287–91.

    PubMed  CAS  Google Scholar 

  26. Schloemer JH, Zagozen JJ. Cost analysis of an aminoglycoside pharmacokinetic dosing program. Am J Hosp Pharm. 1984; 41: 2347–51.

    PubMed  CAS  Google Scholar 

  27. McCormack JP, Lynd LD, Pfeifer NM. Vancomycin cost containment through a therapeutic and pharmacokinetic drug monitoring service. Can J Hosp Pharm. 1989; 42: 3–9.

    Google Scholar 

  28. Toler SM, Wilkerson MA, Porter WH, et al. Severe phenytoin intoxication as a result of altered protein binding in AIDS. Ann Pharmacother. 1990; 24: 698–700.

    CAS  Google Scholar 

  29. Vozeh S. Cost-effectiveness of therapeutic drug monitoring. Clin Pharmacokinet. 1987; 13: 131–40.

    Article  PubMed  CAS  Google Scholar 

  30. Bootman JL, Wertheimer AI, Zaske D, et al. Individualizing gentamicin dosage regimens in burn patients with gram-negative septicemia: a cost-benefit analysis. J Pharm Sci. 1979; 68: 267–72.

    Article  PubMed  CAS  Google Scholar 

  31. Zaske DE, Bootman JL, Solem LB, et al. Increased burn patient survival with individualized dosages of gentamicin. Surgery. 1982; 91: 142–9.

    PubMed  CAS  Google Scholar 

  32. Sveska KJ, Roffe BD, Solomon DK, et al. Outcome of patients treated by an aminoglycoside pharmacokinetic dosing service. Am J Hosp Pharm. 1985; 42: 2472–8.

    PubMed  CAS  Google Scholar 

  33. Kimelblatt BJ, Bradbury K, Chodoff L, et al. Cost-benefit analysis of an aminoglycoside monitoring service. Am J Hosp Pharm. 1986; 43: 1205–9.

    PubMed  CAS  Google Scholar 

  34. Smith M, Murphy JE, Job ML, et al. Aminoglycoside monitoring: use of a pharmacokinetic service versus physician recommendations. Hosp Formul. 1987; 22: 92–102.

    PubMed  CAS  Google Scholar 

  35. Crist KD, Nahata MC, Ety J. Positive impact of a therapeutic drug-monitoring program on total aminoglycoside dose and cost of hospitilization. Ther Drug Monit. 1987; 9: 306–10.

    Article  PubMed  CAS  Google Scholar 

  36. Dillion KR, Dougherty SH, Casner P, et al. Individualized pharmacokinetic versus standard dosing of amikacin: a comparison of therapeutic outcomes. J Antimicrob Chemother. 1989; 24: 581–9.

    Article  Google Scholar 

  37. Destache CJ, Meyer SK, Bittner MJ, et al. Impact of a clinical pharmacokinetic service on patients treated with aminoglycosides: a cost-benefit analysis. Ther Drug Monit. 1990; 12: 419–26.

    Article  PubMed  CAS  Google Scholar 

  38. Destache CJ, Meyer SK, Rowley KM. Does accepting pharmacokinetic recommendations impact hospitalization? a cost-benefit analysis. Ther Drug Monit. 1990; 12: 427–33.

    Article  PubMed  CAS  Google Scholar 

  39. Whipple JK, Ausman RK, Franson T, et al. Effect of individualized pharmacokinetic dosing on patient outcome. Crit Care Med. 1991; 19: 1480–5.

    Article  PubMed  CAS  Google Scholar 

  40. Burton ME, Ash CL, Hill DP, et al. A controlled trial of the cost benefit of computerized Bayesian aminoglycoside administration. Clin Pharmacol Ther. 1991; 49: 685–94.

    Article  PubMed  CAS  Google Scholar 

  41. Pinilla J, Shafran S, Conly J. A utilization and cost-benefit analysis of an aminoglycoside kinetics monitoring service. Clin Invest Med. 1992; 15: 8–17.

    PubMed  CAS  Google Scholar 

  42. Leehey DJ, Braun BI, Tholl DA, et al. Can pharmacokinetic dosing decrease nephrotoxicity associated with aminoglycoside therapy? J Am Soc Nephrol. 1993; 4: 81–90.

    PubMed  CAS  Google Scholar 

  43. Ioannides-Demos LL, Home MK, Tong N, et al. Impact of a pharmacokinetics consultation service on clinical outcomes in an ambulatory-care epilepsy clinic. Am J Hosp Pharm. 1988; 45: 1549–51.

    PubMed  CAS  Google Scholar 

  44. Botha J, Bobat RA, Moosa A, et al. Therapeutic drug monitoring in a paediatric epilepsy clinic. S Afr Med J. 1990; 77: 511–4.

    PubMed  CAS  Google Scholar 

  45. McFayden ML, Miller R, Juta M, et al. The relevance of a first-world therapeutic drug monitoring service to the treatment of epilepsy in third-world conditions. S Afr Med J. 1990; 78: 587–90.

    Google Scholar 

  46. Duhme DW, Greenblatt DJ, Koch-Weser J. Reduction of digoxin toxicity associated with measurement of serum levels. Ann Intern Med. 1974; 80: 516–9.

    PubMed  CAS  Google Scholar 

  47. Lehmann CR, Leonard RG. Effect of theophylline pharmacokinetic monitoring service on cost and quality of care. Am J Hosp Pharm. 1982; 39: 1656–62.

    PubMed  CAS  Google Scholar 

  48. Casner PR, Reilly R, Ho H. A randomized controlled trial of computerized pharmacokinetic theophylline dosing versus empiric physician dosing. Clin Pharmacol Ther. 1993; 53: 684–90.

    Article  PubMed  CAS  Google Scholar 

  49. Welty TE, Copa AK. Impact of vancomycin therapeutic drug monitoring on patient care. Ann Pharmacother. 1994; 28: 1335–9.

    PubMed  CAS  Google Scholar 

  50. del Mar Fernandez de Gatta M, Calvo V, Hernandez JM, et al. Cost-effectiveness analysis of serum vancomycin concentration monitoring in patients with hematologic malignancies. Clin Pharmacol Ther. 1996; 60: 332–40.

    Article  Google Scholar 

  51. Gardner DM, Hardy BG. Cost-effectiveness of therapeutic drug monitoring. Can J Hosp Pharm. 1990; 43: 7–12.

    PubMed  CAS  Google Scholar 

  52. Reents S, Hatton RC. Influence of methods on the evaluation of therapeutic drug-monitoring services. Am J Hosp Pharm. 1991; 48: 1553–9.

    PubMed  CAS  Google Scholar 

  53. Tonkin AL, Bochner F. Therapeutic drug monitoring and patient outcome: a review of the issues. Clin Pharmacokinet. 1994; 27: 169–74.

    Article  PubMed  CAS  Google Scholar 

  54. Murphy JE, Slack MK, Campbell S. National survey of hospital-based pharmacokinetic services. Am J Health Syst Pharm. 1996; 53: 2840–7.

    PubMed  CAS  Google Scholar 

  55. DiPiro JT, Blouin RA, Pruemer JM, et al. Concepts in clinical pharmacokinetics: a self-instructional ocurse. 2nd ed. Bethesda: American Society of Health-System Pharmacists Inc., 1996.

    Google Scholar 

  56. Noone P, Pattison JR. The effective use of gentamicin in life-threatening sepsis. Postgrad Med J. 1974; 50 Suppl. 7: 9–16.

    Article  PubMed  Google Scholar 

  57. Noone P, Parsons TMC, Pattison JR, et al. Experience in monitoring gentamicin therapy during treatment of serious gramnegative sepsis. BMJ. 1974; 1: 477–81.

    Article  PubMed  CAS  Google Scholar 

  58. Dahlgren JG, Anderson ET, Hewitt WL. Gentamicin blood levels: a guide to nephrotoxicity. Antimicrob Agents Chemother. 1975; 8: 58–62.

    Article  PubMed  CAS  Google Scholar 

  59. Goodman EL, Van Gelder J, Holmes R, et al. Prospective comparative study of variable dosage and variable frequency regimens for administration of gentamicin. Antimicrob Agents Chemother. 1975; 8: 434–8.

    Article  PubMed  CAS  Google Scholar 

  60. Moore RD, Smith CR, Lietman PS. Association of aminoglycoside plasma levels with therapeutic outcome in gram-negative pneumonia. Am J Med. 1984; 77: 657–62.

    Article  PubMed  CAS  Google Scholar 

  61. Smith CR, Moore RD, Lerner SA. Aminoglycoside ototoxicity: interaction between duration of therapy and plasma trough levels [abstract]. Clin Pharmacol Ther. 1986; 39: 229.

    Google Scholar 

  62. Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infec Dis. 1987; 155: 93–9.

    Article  CAS  Google Scholar 

  63. Lindholm A, Kahan BD. Influence of cyclosporine pharmacokinetics, trough concentrations, and AUC monitoring on outcome after kidney transplantation. Clin Pharmacol Ther. 1993; 54: 205–18.

    Article  PubMed  CAS  Google Scholar 

  64. Prien RF, Caffey EM, Klett CJ. Relationship between serum lithium level and clinical response in acute mania treated with lithium. Br J Psychiatry. 1972; 120: 409–14.

    Article  PubMed  CAS  Google Scholar 

  65. Evans WE, Crom WR, Abromowitch M, et al. Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia: identification of a relationship between concentration and effect. N Engl J Med. 1986; 314: 471–7.

    Article  PubMed  CAS  Google Scholar 

  66. Lockman LA, Kriel R, Zaske D, et al. Phenobarbital dosage for control of neonatal seizures. Neurology. 1979; 29: 1445–9.

    Article  PubMed  CAS  Google Scholar 

  67. Buchthal F, Svensmark O, Schiller PJ. Clinical and electroen-cephalographic correlations with serum levels of diphenylhydantoin. Arch Neurol. 1960; 2: 624–30.

    Article  PubMed  CAS  Google Scholar 

  68. Ford JM, Truman CA, Wilcock GK, et al. Serum concentrations of tacrine hydrochloride predict its adverse effects in Alzheimer’s disease. Clin Pharmacol Ther. 1993; 53: 691–5.

    Article  PubMed  CAS  Google Scholar 

  69. Gram L, Flachs H, Wurtz-Jorgensen A, et al. Sodium valproate, serum level and clinical effect in epilepsy: a controlled study. Epilepsia. 1979; 20: 303–12.

    Article  PubMed  CAS  Google Scholar 

  70. Cimino MA, Rotstein C, Slaughter RL, et al. Relationship of serum antibiotic concentrations to nephrotoxicity in cancer patients receiving concurrent aminoglycoside and vancomycin therapy. Am J Med. 1987; 83: 1091–7.

    Article  PubMed  CAS  Google Scholar 

  71. Rybak MJ, Albrecht LM, Boike SC, et al. Nephrotoxicity of vancomycin alone and with an aminoglycoside. J Antimicrob Chemother. 1990; 25: 679–87.

    Article  PubMed  CAS  Google Scholar 

  72. Lund L. Anticonvulsant effect of diphenylhydantoin relative to plasma levels. Arch Neurol. 1974; 31: 289–94.

    Article  PubMed  CAS  Google Scholar 

  73. Schmidt D, Einicke I, Haenel F. The influence of seizure type on the efficacy of plasma concentration of phenytoin, phenobarbital and carbamazepine. Arch Neurol. 1986; 43: 263–5.

    Article  PubMed  CAS  Google Scholar 

  74. Woo E, Chan YM, Yu YL, et al. If a well-stabilized epileptic patient has a subtherapeutic antiepileptic drug level, should the dose be increased? a randomized prospective study. Epilepsia. 1988; 29: 129–39.

    Article  PubMed  CAS  Google Scholar 

  75. McCormack JP, Jewesson PJ. A critical reevaluation of the ‘therapeutic range’ of aminoglycosides. Clin Infect Dis. 1992; 14: 320–9.

    Article  PubMed  CAS  Google Scholar 

  76. Zimmerman AE, Katona BG, Plaisance KL. Association of vancomycin serum concentrations with outcomes in patients with gram-positive bacteremia. Pharmacotherapy. 1995; 15: 85–91.

    Google Scholar 

  77. Dobbs RJ, O’Neill CJA, Deshmukh AA, et al. Serum concentration monitoring of cardiac glycosides: how helpful is it for adjusting dosage regimens? Clin Pharmacokinet. 1991; 20: 175–93.

    Article  PubMed  CAS  Google Scholar 

  78. Holford N, Black P, Couch R, et al. Theophylline target concentration in severe airways obstruction: 10 or 20 mg/L? Clin Pharmacokinet. 1993; 25: 495–505.

    Article  PubMed  CAS  Google Scholar 

  79. Holford NHG. The target concentration approach to clinical drug development. Clin Pharmacokinet. 1995; 29: 287–91.

    Article  PubMed  CAS  Google Scholar 

  80. Morris RG. Target concentration strategy for cyclosporin monitoring. Clin Pharmacokinet. 1997; 32: 175–9.

    Article  PubMed  CAS  Google Scholar 

  81. Nicolau DP, Freeman CD, Belliveau PP. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother. 1995; 39: 650–5.

    Article  PubMed  CAS  Google Scholar 

  82. Leader WG, Chandler MHH, Castiglia M. Pharmacokinetic optimisation of vancomycin therapy. Clin Pharmacokinet. 1995; 28: 327–42.

    Article  PubMed  CAS  Google Scholar 

  83. Chandler MHH. Clinical pharmacokinetics service policy and procedure manual. 19th ed. Lexington (KY): University of Kentuchy Medical Center, 1996.

    Google Scholar 

  84. Wolf BA. Overview of therapeutic drug monitoring and biotechnologic drugs. Ther Drug Monit. 1996; 18: 402–4.

    Article  PubMed  CAS  Google Scholar 

  85. Leader WG, Pestotnik SL, Chandler MHH. Integrating pharmacokinetics into point-of-care information systems. Clin Pharmacokinet. 1996; 31: 165–73.

    Article  PubMed  CAS  Google Scholar 

  86. Strand LM, Cipolle RJ, Morley PC. Pharmaceutical care: an introduction. Kalamazoo (MA): The Upjohn Co., 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary H. H. Ensom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ensom, M.H.H., Davis, G.A., Cropp, C.D. et al. Clinical Pharmacokinetics in the 21st Century. Clin Pharmacokinet 34, 265–279 (1998). https://doi.org/10.2165/00003088-199834040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199834040-00001

Keywords

Navigation