Skip to main content
Log in

The human thymus during aging

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The human thymusis required for establishment of a normal T cell repertoire in fetal development, as children born without a thymus (DiGeorge Syndrome) lack thymus-derived (T) and T cell immunity. While the function of the thymus in children for production of new T cells is clear, it has not been obvious that the adult thymus can produce significant numbers of new T cells. Until recently, no assays were available to directly evaluate postnatal thymic function. This paper reviews work on human thymic aging at Duke University School of Medicine and discusses the relevance of this work to devising new strategies for T cell immune reconstitution in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinmann GG, Klaus B, Muller-Hermelink HK: The involution of the aging human thymic epithelium is independent of puberty, A morphometric study. Scand J Immunol 1985;22:563–575.

    Article  PubMed  CAS  Google Scholar 

  2. Steinmann GG: Changes in the human thymus during aging. Curr Topics Pathol 1986;75:43–88.

    CAS  Google Scholar 

  3. Flores KG, Li J, Sempowski GD, Haynes BF, Hale LP: Analysis of the human thymic perivascular space during aging. J Clin Invest 1999;104:1031–1039.

    PubMed  CAS  Google Scholar 

  4. Haynes BF, Scearce RM, Lobach DF, Hensley LL: Phenotypic characterization and ontogeny of mesodermal-derived and endocrine epithelial components of the human thymic microenvironment. J Exp Med 1984;159:1149–1168.

    Article  PubMed  CAS  Google Scholar 

  5. George AJT, Ritter MA: Thymic involution with ageing: absolescence or good house keeping? Immunol Today 1996;17:267–271.

    Article  PubMed  CAS  Google Scholar 

  6. Sempowski GD, Hale LP, Sundy JS, et al.: Leukemia Inhibitory Factor, Oncostatin M, IL-6 and Stem Cell Factor mRNA. 2000. Expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 2000;164:2180–2187.

    PubMed  CAS  Google Scholar 

  7. Douek DC, McFarland RD, Keiser PH, et al.: Changes in thymic function with age and during the treatment of HIV infection. Nature 1998;396:690–695.

    Article  PubMed  CAS  Google Scholar 

  8. Kong F-K, Chen CH, Six A, Hockett RD, Cooper MD: T cell receptor gene deletion circles identify recent thymic emigrants in the peripheral T cell pool. Proc Natl Acad Sci USA 1999;96: 1536–1540.

    Article  PubMed  CAS  Google Scholar 

  9. Jamieson BD, Douek DC, Killian S, et al.: Generation of functional thymocytes in the human adult. Immunity 1999;10:569–575.

    Article  PubMed  CAS  Google Scholar 

  10. Aspinall R: Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J Immunol 1997;158:3037–3045.

    PubMed  CAS  Google Scholar 

  11. Hartwig M, Steinmann G: On a causal mechanism of chronic thymic involution in man. Mech Ageing Dev 1994;75:151–156.

    Article  PubMed  CAS  Google Scholar 

  12. Hirokawa K, Sato K, Makinodan T: Influence of age of thymic grafts on the differentiation of T cells in nude mice. Clin Immunol Immunopath 1982;24:251–262.

    Article  CAS  Google Scholar 

  13. Leiner H, Greinert U, Scheiwe W, Bathmann R, Muller-Hermelink HK: Repopulation of lymph nodes and spleen in thymus chimeras after lethal irradiation and bone marrow transplantation: dependence on the age of the thymus. Immunobiology 1984;167:345–358.

    PubMed  CAS  Google Scholar 

  14. Utsuyama M, Kasai M, Kurashima C, Hirokawa K: Age influence on the thymic capacity to promote differentiation of T cells: induction of different composition of T cell subsets by aging thymus. Mech Ageing Dev 1991;58:267–277.

    Article  PubMed  CAS  Google Scholar 

  15. Tyan ML: Age-related decrease in mouse T cell progenitors. J Immunol 1977;118:846–851.

    PubMed  CAS  Google Scholar 

  16. Kadish JL, Basch RS: Hematopoietic thymocyte precursors. I. Assay and kinetics of the appearance of progeny. J Exp Med 1976;143: 1082.

    Article  PubMed  CAS  Google Scholar 

  17. Le PT, Tuck DT, Dinarello CA, Haynes BF, Singer KH: Human thymic epithelial cells produce interleukin 1. J Immunol 1987;138: 2520.

    PubMed  CAS  Google Scholar 

  18. Le PT, Kurtzberg J, Brandt SJ, Niedel JE, Haynes BF, Singer KH: Human thymic epithelial cells produce granulocyte and macrophage colony-stimulating factors. J Immunol 1988;141:1211.

    PubMed  CAS  Google Scholar 

  19. Le PT, Lazorick S, Whichard LP, et al.: Human thymic epithelial cells produce IL-6, granulocyte-monocyte-CSF, and leukemia inhibitory factor. J Immunol 1990; 145:3310.

    PubMed  CAS  Google Scholar 

  20. Le PT, Vollger LW, Haynes BF, Singer KH: Ligand binding to the LFA-3 cell adhesion molecule induces IL-1 production by human thymic epithelial cells. J Immunol 1990;144:4541.

    PubMed  CAS  Google Scholar 

  21. Le PT, Lazorick S, Whichard LP, Haynes BF, Singer KH: Regulation of cytokine production in the human thymus: epidermal growth factor and transforming growth factor alpha regulate mRNA levels of interleukin 1 alpha (IL-1 alpha), IL-1 beta, and IL-6 in human thymic epithelial cells at a post-transcriptional level. J Exp Med 1991;174:1147.

    Article  PubMed  CAS  Google Scholar 

  22. Taga T, Kishimoto T: Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 1997; 15:797–819.

    Article  PubMed  CAS  Google Scholar 

  23. Shapiro L, Panayotatos N, Meydani SN, et al.: Ciliary neurotropic factor combined with soluble receptor inhibits synthesis of proinflammatory cytokines and proinflammatory cytokines and prostaglandin-E2 in vitro. Exp Cell Res 1994;215:51–56.

    Article  PubMed  CAS  Google Scholar 

  24. Shapiro L, Zhang XX, Rupp RG, Wolf SM, Dinarello CA: Ciliary neurotropic factor is an endogenous pyrogen. Proc. Natl Acad Sci USA, 1993;90:8614–8618.

    Article  PubMed  CAS  Google Scholar 

  25. Dittrich F, Thoenen H, Sendtner M: Ciliary neurotrophic factor: Pharmacokinetics and acute-phase response in rat. Ann Neurol 1994; 35:151–163.

    Article  PubMed  CAS  Google Scholar 

  26. Mossalayi MD, Mentz F, Ouaaz F, et al.: Early human thymocyte proliferation is regulated by an externally controlled autocrine transforming growth factor-beta 1 mechanism. Blood 1995;85:3594.

    PubMed  CAS  Google Scholar 

  27. Fox FE, Ford HC, Douglas R, Cherian S, Nowell PC: Evidence that TGF-beta can inhibit human T-lymphocyte proliferation through paracrine and autocrine mechanisms. Cellular Immunology 1993; 150:45.

    Article  PubMed  Google Scholar 

  28. Takahama Y, Letterio JJ, Suzuki H, Farr AG, Singer A: Early progression of thymocytes along the CD4/CD8 developmental pathway is regulated by a subset of thymic epithelial cells expressing transforming growth factor beta. J Exp Med 1994;179:1495.

    Article  PubMed  CAS  Google Scholar 

  29. Schluns KS, Cook JE, Le PT: TGF-β differentially modulates epidermal growth factor-mediated increases in leukemia-inhibitory factor, IL-6, IL-1α, and IL-1β, in human thymic epithelial cells. J Immunol 1997;158:2704.

    PubMed  CAS  Google Scholar 

  30. Bofill M, Janossy G, Willcox N, Chilosi M. Microenvironments in the normal thymus and the thymus in myasthenia gravis. Am J Pathol 1985;119:462–273.

    PubMed  CAS  Google Scholar 

  31. Haynes BF, Hale LP: The human thymus: A chimeric organ comprised of central and peripheral lymphoid components. Immunol Res 1998;3:175–192.

    Google Scholar 

  32. Tabbara IA, Ghazal CD, Ghazal HH: The role of granulocyte colony-stimulating factor in hematopoietic stem cell transplantation. Cancer Invest 1997;15: 353–357.

    PubMed  CAS  Google Scholar 

  33. Bolotin E, Smogorzewska M, Smith S, Widmer M, Weinberg K: Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood 1996;88: 1887–1894.

    PubMed  CAS  Google Scholar 

  34. Puel A, Ziegler SF, Buckley RH, Leonard WJ: Defective IL7R expression in T(−)B(+)NK(+) severe combined immuno deficiency. Nature Genetics 1998; 20:394.

    Article  PubMed  CAS  Google Scholar 

  35. Plum J, De Smedt M, Leclercq G, Verhasselt B, Vandekerckhove B: Interleukin-7 is a critical growth factor in early human T-cell development. Blood 1996;88:4239.

    PubMed  CAS  Google Scholar 

  36. Abdul-Hai A, Or R, Stavin S, Friedman G, Weiss L, Matsa D, Ben-Yehuda A: Stimulation of immune reconstitution by interleukin-7 after syngeneic bone marrow transplantation in mice. Experimental Hematology 1996;24:1416.

    PubMed  CAS  Google Scholar 

  37. Frasca D, Pioli C, Guidi F, Pucci S, Arbitrio M, Leter G, Doria G: IL-11 synergizes with IL-3 in promoting the recovery of the immune system after irradiation. International Immunology 1996;8:1651.

    Article  PubMed  CAS  Google Scholar 

  38. Markert ML, Boeck A, Hale LP, et al.: Transplantation of thymus tissue in complete DiGeorge Syndrome. N Engl J Med 1999;341: 1180–1189.

    Article  PubMed  CAS  Google Scholar 

  39. Markert LM, Alvarez-McLeod AP, Sempowski GD, Haynes, BF: Thymopoiesis in HIV-infected adults after highly active antiretroviral therapy. Submitted, 2001.

  40. McCune JM, Loftus R, Schmidt DK, Carroll P, Webster D, Swor-Yim LB, Francis IR, Gross BH, Grant RM: High prevalence of thymic tissue in adults with human immunodeficiency virus-1 infection. J Clin Invest 1998;101:2301–08.

    Article  PubMed  CAS  Google Scholar 

  41. Haynes BF, Markert ML, Sempowski GD, Patel DD, and Hale LP: The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HiV-1 infection. Annu Rev Immunol 2000;18:529–560.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, B.F., Sempowski, G.D., Wells, A.F. et al. The human thymus during aging. Immunol Res 22, 253–261 (2000). https://doi.org/10.1385/IR:22:2-3:253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:22:2-3:253

Key Words

Navigation