1932

Abstract

An observational correlation between a suspected risk factor and an outcome does not necessarily imply that interventions on levels of the risk factor will have a causal impact on the outcome (correlation is not causation). If genetic variants associated with the risk factor are also associated with the outcome, then this increases the plausibility that the risk factor is a causal determinant of the outcome. However, if the genetic variants in the analysis do not have a specific biological link to the risk factor, then causal claims can be spurious. We review the Mendelian randomization paradigm for making causal inferences using genetic variants. We consider monogenic analysis, in which genetic variants are taken from a single gene region, and polygenic analysis, which includes variants from multiple regions. We focus on answering two questions: When can Mendelian randomization be used to make reliable causal inferences, and when can it be used to make relevant causal inferences?

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083117-021731
2018-08-31
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/genom/19/1/annurev-genom-083117-021731.html?itemId=/content/journals/10.1146/annurev-genom-083117-021731&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Angrist J, Imbens G, Rubin D 1996. Identification of causal effects using instrumental variables. J. Am. Stat. Assoc. 91:444–55
    [Google Scholar]
  2. 2.  Barfield R, Feng H, Gusev A, Wu L, Zheng W et al. 2017. Assessing the genetic effect mediated through gene expression from summary eQTL and GWAS data. bioRxiv 223263. https://doi.org/10.1101/223263
    [Crossref]
  3. 3.  Baum C, Schaffer M, Stillman S 2003. Instrumental variables and GMM: estimation and testing. Stata J 3:1–31
    [Google Scholar]
  4. 4.  Benn M, Nordestgaard BG, Frikke-Schmidt R, Tybjærg-Hansen A 2017. Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of Alzheimer's disease and Parkinson's disease: Mendelian randomisation study. Br. Med. J. 357:j1648
    [Google Scholar]
  5. 5.  Benner C, Spencer CC, Havulinna AS, Salomaa V, Ripatti S, Pirinen M 2016. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32:1493–501
    [Google Scholar]
  6. 6.  Berzuini C, Guo H, Burgess S, Bernardinelli L 2017. Bayesian Mendelian randomization. arXiv1608.02990 [math.ST]
  7. 7.  Bowden J, Davey Smith G, Burgess S 2015. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44:512–25
    [Google Scholar]
  8. 8.  Bowden J, Davey Smith G, Haycock PC, Burgess S 2016. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40:304–14
    [Google Scholar]
  9. 9.  Bowden J, Del Greco M F, Minelli C, Davey Smith G, Sheehan NA, Thompson JR 2016. Assessing the suitability of summary data for Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int. J. Epidemiol. 45:1961–74
    [Google Scholar]
  10. 10.  Bowden J, Del Greco M F, Minelli C, Lawlor D, Sheehan N et al. 2017. Improving the accuracy of two-sample summary data Mendelian randomization: moving beyond the NOME assumption. bioRxiv 159442. https://doi.org/10.1101/159442
    [Crossref]
  11. 11.  Bowden J, Del Greco M F, Minelli C, Davey Smith G, Sheehan N, Thompson J 2017. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36:1783–802
    [Google Scholar]
  12. 12.  Bowden J, Vansteelandt S 2011. Mendelian randomisation analysis of case-control data using structural mean models. Stat. Med. 30:678–94
    [Google Scholar]
  13. 13.  Bulik-Sullivan BK, Finucane HK, Anttila V, Gusev A, Day FR et al. 2015. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47:1236–41
    [Google Scholar]
  14. 14.  Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J et al. 2015. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47:291–95
    [Google Scholar]
  15. 15.  Burgess S, Bowden J, Dudbridge F, Thompson SG 2016. Robust instrumental variable methods using multiple candidate instruments with application to Mendelian randomization. arXiv1606.03729 [stat.ME]
  16. 16.  Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG 2017. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology 28:30–42
    [Google Scholar]
  17. 17.  Burgess S, Butterworth AS, Malarstig A, Thompson SG 2012. Use of Mendelian randomisation to assess potential benefit of clinical intervention. Br. Med. J. 345:e7325
    [Google Scholar]
  18. 18.  Burgess S, Butterworth AS, Thompson JR 2016. Beyond Mendelian randomization: how to interpret evidence of shared genetic predictors. J. Clin. Epidemiol. 69:208–16
    [Google Scholar]
  19. 19.  Burgess S, Butterworth AS, Thompson SG 2013. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37:658–65
    [Google Scholar]
  20. 20.  Burgess S, Davey Smith G 2017. Mendelian randomization implicates high-density lipoprotein cholesterol–associated mechanisms in etiology of age-related macular degeneration. Ophthalmology 124:1165–74
    [Google Scholar]
  21. 21.  Burgess S, Davies NM, Thompson SG 2016. Bias due to participant overlap in two-sample Mendelian randomization. Genet. Epidemiol. 40:597–608
    [Google Scholar]
  22. 22.  Burgess S, Dudbridge F, Thompson SG 2016. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat. Med. 35:1880–906
    [Google Scholar]
  23. 23.  Burgess S, Freitag D, Khan H, Gorman D, Thompson SG 2014. Using multivariable Mendelian randomization to disentangle the causal effects of lipid fractions. PLOS ONE 9:e108891
    [Google Scholar]
  24. 24.  Burgess S, Scott R, Timpson N, Davey Smith G, Thompson SG, EPIC-InterAct Consort 2015. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur. J. Epidemiol. 30:543–52
    [Google Scholar]
  25. 25.  Burgess S, Thompson DJ, Rees JM, Day FR, Perry JR, Ong KK 2017. Dissecting causal pathways using Mendelian randomization with summarized genetic data: application to age at menarche and risk of breast cancer. Genetics 207:481–87
    [Google Scholar]
  26. 26.  Burgess S, Thompson SG 2011. Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat. Med. 30:1312–23
    [Google Scholar]
  27. 27.  Burgess S, Thompson SG 2013. Use of allele scores as instrumental variables for Mendelian randomization. Int. J. Epidemiol. 42:1134–44
    [Google Scholar]
  28. 28.  Burgess S, Thompson SG 2015. Mendelian Randomization: Methods for Using Genetic Variants in Causal Estimation Boca Raton, FL: Chapman & Hall
  29. 29.  Burgess S, Thompson SG 2015. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 181:251–60
    [Google Scholar]
  30. 30.  Burgess S, Thompson SG 2017. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32:377–89
    [Google Scholar]
  31. 31.  Burgess S, Zuber V, Gkatzionis A, Rees JMB, Foley CN 2017. Improving on a modal-based estimation method: model averaging for consistent and efficient estimation in Mendelian randomization when a plurality of candidate instruments are valid. bioRxiv 175372. https://doi.org/10.1101/175372
    [Crossref]
  32. 32. C React. Protein Coron. Heart Dis. Genet. Collab. 2011. Association between C reactive protein and coronary heart disease: Mendelian randomisation analysis based on individual participant data. Br. Med. J. 342:d548
    [Google Scholar]
  33. 33. CARDIoGRAMplusC4D Consort. 2015. A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47:1121–30
    [Google Scholar]
  34. 34.  Cho Y, Shin SY, Won S, Relton CL, Davey Smith G, Shin MJ 2015. Alcohol intake and cardiovascular risk factors: a Mendelian randomisation study. Sci. Rep. 5:18422
    [Google Scholar]
  35. 35.  Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D et al. 2010. Illustrating bias due to conditioning on a collider. Int. J. Epidemiol. 39:417–20
    [Google Scholar]
  36. 36. Cross-Disord. Group Psychiatr. Genom. Consort. 2013. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–79
    [Google Scholar]
  37. 37.  Davey Smith G, Ebrahim S 2003. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease?. Int. J. Epidemiol. 32:1–22
    [Google Scholar]
  38. 38.  Davey Smith G, Ebrahim S 2004. Mendelian randomization: prospects, potentials, and limitations. Int. J. Epidemiol. 33:30–42
    [Google Scholar]
  39. 39.  Day F, Thompson D, Helgason H, Chasman D, Finucane H et al. 2017. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49:834–41
    [Google Scholar]
  40. 40. Diabetes Genet. Replication Meta-Anal. (DIAGRAM) Consort., Asian Genet. Epidemiol. Netw. Type 2 Diabetes (AGEN-T2D) Consort., South Asian Type 2 Diabetes (SAT2D) Consort., Mex. Am. Type 2 Diabetes (MAT2D) Consort., Type 2 Diabetes Genet. Explor. Next-Gener. Seq. Multi-Ethnic Samples (T2D-GENES) Consort., et al. 2014. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46:234–44
    [Google Scholar]
  41. 41.  Didelez V, Sheehan N 2007. Mendelian randomization as an instrumental variable approach to causal inference. Stat. Methods Med. Res. 16:309–30
    [Google Scholar]
  42. 42.  DiPrete TA, Burik C, Koellinger P 2017. Genetic instrumental variable (GIV) regression: explaining socioeconomic and health outcomes in non-experimental data. bioRxiv 134197. https://doi.org/10.1101/134197
    [Crossref]
  43. 43. Emerg. Risk Factors Collab. 2010. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375:132–40
    [Google Scholar]
  44. 44.  Ference BA, Yoo W, Alesh I, Mahajan N, Mirowska KK et al. 2012. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J. Am. Coll. Cardiol. 60:2631–39
    [Google Scholar]
  45. 45.  Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD et al. 2014. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLOS Genet 10:e1004383
    [Google Scholar]
  46. 46. Glob. Lipids Genet. Consort. 2013. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45:1274–83
    [Google Scholar]
  47. 47.  Glymour M, Tchetgen Tchetgen E, Robins J 2012. Credible Mendelian randomization studies: approaches for evaluating the instrumental variable assumptions. Am. J. Epidemiol. 175:332–39
    [Google Scholar]
  48. 48.  Greco M, Minelli C, Sheehan NA, Thompson JR 2015. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat. Med. 34:2926–40
    [Google Scholar]
  49. 49.  Greenland S 2000. An introduction to instrumental variables for epidemiologists. Int. J. Epidemiol. 29:722–29
    [Google Scholar]
  50. 50.  Guo H, Fortune MD, Burren OS, Schofield E, Todd JA, Wallace C 2015. 2015. Integration of disease association and eQTL data using a Bayesian colocalisation approach highlights six candidate causal genes in immune-mediated diseases. Hum. Mol. Genet. 24:3305–13
    [Google Scholar]
  51. 51.  Guo Y, Andersen SW, Shu XO, Michailidou K, Bolla MK et al. 2016. Genetically predicted body mass index and breast cancer risk: Mendelian randomization analyses of data from 145,000 women of European descent. PLOS Med 13:e1002105
    [Google Scholar]
  52. 52.  Guo Z, Kang H, Cai TT, Small DS 2017. Confidence intervals for causal effects with invalid instruments using two-stage hard thresholding with voting. arXiv1603.05224 [math.ST]
  53. 53.  Han C 2008. Detecting invalid instruments using L1-GMM. Econ. Lett. 101:285–87
    [Google Scholar]
  54. 54.  Hartwig FP, Davey Smith G, Bowden J 2017. Robust inference in summary data Mendelian randomisation via the zero modal pleiotropy assumption. Int. J. Epidemiol. 46:1985–98
    [Google Scholar]
  55. 55.  Hartwig FP, Davies NM 2016. Why internal weights should be avoided (not only) in MR-Egger regression. Int. J. Epidemiol. 45:1676–78
    [Google Scholar]
  56. 56.  Hernán M, Hernández-Daz S, Robins J 2004. A structural approach to selection bias. Epidemiology 15:615–25
    [Google Scholar]
  57. 57.  Hernán M, Robins J 2006. Instruments for causal inference: an epidemiologist's dream?. Epidemiology 17:360–72
    [Google Scholar]
  58. 58.  Hernán M, Robins J 2018. Causal Inference Boca Raton, FL: Chapman & Hall/CRC Press. Forthcoming; draft chapters available at http://www.hsph.harvard.edu/faculty/miguel-hernan/causal-inference-book
  59. 59.  Hingorani A, Humphries S 2005. Nature's randomised trials. Lancet 366:1906–8
    [Google Scholar]
  60. 60.  Hormozdiari F, Kostem E, Kang EY, Pasaniuc B, Eskin E 2014. Identifying causal variants at loci with multiple signals of association. Genetics 198:497–508
    [Google Scholar]
  61. 61. IL6R Genet. Consort. Emerg. Risk Factors Collab. 2012. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379:1205–13
    [Google Scholar]
  62. 62. Interleukin 1 Genet. Consort. 2015. Cardiometabolic consequences of genetic up-regulation of the interleukin-1 receptor antagonist: Mendelian randomisation analysis of more than one million individuals. Lancet Diabetes Endocrinol 3:243–53
    [Google Scholar]
  63. 63. Interleukin-6 Recept. Mendel. Randomisation Anal. Consort. 2012. The interleukin-6 receptor as a target for prevention of coronary heart disease: a Mendelian randomisation analysis. Lancet 379:1214–24
    [Google Scholar]
  64. 64.  Jiang L, Oualkacha K, Didelez V, Ciampi A, Rosa P et al. 2017. Constrained instruments and their application to Mendelian randomization with pleiotropy. bioRxiv 227454. https://doi.org/10.1101/227454
    [Crossref]
  65. 65.  Kang H, Zhang A, Cai T, Small D 2016. Instrumental variables estimation with some invalid instruments, and its application to Mendelian randomisation. J. Am. Stat. Assoc. 111:132–44
    [Google Scholar]
  66. 66.  Lawlor D, Harbord R, Sterne J, Timpson N, Davey Smith G 2008. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27:1133–63
    [Google Scholar]
  67. 67.  Lee YS, Cho Y, Burgess S, Davey Smith G, Relton CL et al. 2016. Serum gamma-glutamyl transferase and risk of type 2 diabetes in the general Korean population: a Mendelian randomization study. Hum. Mol. Genet. 25:3877–86
    [Google Scholar]
  68. 68.  Lewis S, Clarke M 2001. Forest plots: trying to see the wood and the trees. Br. Med. J. 322:1479–80
    [Google Scholar]
  69. 69.  Lewis S, Davey Smith G 2005. Alcohol, ALDH2, and esophageal cancer: a meta-analysis which illustrates the potentials and limitations of a Mendelian randomization approach. Cancer Epidemiol. Biomark. Prev. 14:1967–71
    [Google Scholar]
  70. 70.  Li S 2017. Mendelian randomization when many instruments are invalid: hierarchical empirical Bayes estimation. arXiv1706.01389 [stat.ME]
  71. 71.  Lin DY, Sullivan PF 2009. Meta-analysis of genome-wide association studies with overlapping subjects. Am. J. Hum. Genet. 85:862–72
    [Google Scholar]
  72. 72.  Lipsitch M, Tchetgen Tchetgen E, Cohen T 2010. Negative controls: a tool for detecting confounding and bias in observational studies. Epidemiology 21:383–88
    [Google Scholar]
  73. 73.  Lotta LA, Sharp SJ, Burgess S, Perry JR, Stewart ID et al. 2016. Association between low-density lipoprotein cholesterol–lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA 316:1383–91
    [Google Scholar]
  74. 74.  Martinussen T, Vansteelandt S, Tchetgen Tchetgen EJ, Zucker DM 2016. Instrumental variables estimation of exposure effects on a time-to-event response using structural cumulative survival models. arXiv1608.00818 [stat.ME]
  75. 75.  Noyce AJ, Kia DA, Hemani G, Nicolas A, Price TR et al. 2017. Estimating the causal influence of body mass index on risk of Parkinson disease: a Mendelian randomisation study. PLOS Med 14:e1002314
    [Google Scholar]
  76. 76.  O'Connor LJ, Price AL 2017. Distinguishing genetic correlation from causation across 52 diseases and complex traits. bioRxiv 205435. https://doi.org/10.1101/205435
    [Crossref]
  77. 77.  Pearl J 2000. Causality: Models, Reasoning, and Inference Cambridge, UK: Cambridge Univ. Press
  78. 78.  Pierce B, Burgess S 2013. Efficient design for Mendelian randomization studies: subsample and two-sample instrumental variable estimators. Am. J. Epidemiol. 178:1177–84
    [Google Scholar]
  79. 79.  Plenge R, Scolnick E, Altshuler D 2013. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12:581–94
    [Google Scholar]
  80. 80.  Rees J, Wood A, Burgess S 2017. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. arXiv1708.00272 [stat.ME]
  81. 81.  Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH et al. 2017. Antiinflammatory therapy with canakinumab for atherosclerotic disease. New Engl. J. Med. 377:1119–31
    [Google Scholar]
  82. 82.  Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW 2013. Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet. 14:483–95
    [Google Scholar]
  83. 83.  Speed D, Cai N, UCLEB Consort., Johnson MR, Nejentsev S, Balding DJ 2017. Reevaluation of SNP heritability in complex human traits. Nat. Genet. 49:986–92
    [Google Scholar]
  84. 84.  Spiller W, Slichter D, Bowden J, Davey Smith G 2017. Detecting and correcting for bias in Mendelian randomization analyses using gene-by-environment interactions. bioRxiv 187849. https://doi.org/10.1101/187849
    [Crossref]
  85. 85.  Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P et al. 2016. PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics 32:3207–9
    [Google Scholar]
  86. 86.  Sterne JA, Sutton AJ, Ioannidis J, Terrin N, Jones DR et al. 2011. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. Br. Med. J. 343:d4002
    [Google Scholar]
  87. 87.  Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR et al. 2017. Consequences of natural perturbations in the human plasma proteome. bioRxiv 134551. https://doi.org/10.1101/134551
    [Crossref]
  88. 88.  Swanson SA, Tiemeier H, Ikram MA, Hernán MA 2017. Nature as a trialist? Deconstructing the analogy between Mendelian randomization and randomized trials. Epidemiology 28:653–59
    [Google Scholar]
  89. 89.  Taylor F, Ward K, Moore T, Burke M, Davey Smith G et al. 2013. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2013:1
    [Google Scholar]
  90. 90.  Tchetgen Tchetgen EJ, Sun B-L, Walter S 2017. The GENIUS approach to robust Mendelian randomization inference. arXiv1709.07779 [stat.ME]
  91. 91.  Tchetgen Tchetgen E, Walter S, Vansteelandt S, Martinussen T, Glymour M 2015. Instrumental variable estimation in a survival context. Epidemiology 26:402–10
    [Google Scholar]
  92. 92.  Thompson SG, Sharp S 1999. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat. Med. 18:2693–708
    [Google Scholar]
  93. 93.  van Kippersluis H, Rietveld CA 2018. Pleiotropy-robust Mendelian randomization. Int. J. Epidemiol. In press. https://doi.org/10.1093/ije/dyx002
    [Crossref]
  94. 94.  VanderWeele T, Tchetgen Tchetgen E, Cornelis M, Kraft P 2014. Methodological challenges in Mendelian randomization. Epidemiology 25:427–35
    [Google Scholar]
  95. 95.  Vansteelandt S, Dukes O, Martinussen T 2018. Survivor bias in Mendelian randomization analysis. Biostatistics In press. https://doi.org/10.1093/biostatistics/kxx050
    [Crossref]
  96. 96.  Verbanck M, Chen C-Y, Neale B, Do R 2017. Widespread pleiotropy confounds causal relationships between complex traits and diseases inferred from Mendelian randomization. bioRxiv 157552. https://doi.org/10.1101/157552
    [Crossref]
  97. 97.  Wallace C 2013. Statistical testing of shared genetic control for potentially related traits. Genet. Epidemiol. 37:802–13
    [Google Scholar]
  98. 98.  Walter S, Kubzansky LD, Koenen KC, Liang L, Tchetgen Tchetgen EJ et al. 2015. Revisiting Mendelian randomization studies of the effect of body mass index on depression. Am. J. Med. Genet. B 168:108–15
    [Google Scholar]
  99. 99.  Windmeijer F, Farbmacher H, Davies N, Davey Smith G 2016. On the use of the lasso for instrumental variables estimation with some invalid instruments Discuss. Pap. 16/674, Univ. Bristol, Bristol, UK
  100. 100.  Wooldridge J 2009. Introductory Econometrics: A Modern Approach Nashville, TN: South-Western
  101. 101.  Yavorska OO, Burgess S 2017. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46:1734–39
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083117-021731
Loading
/content/journals/10.1146/annurev-genom-083117-021731
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error