Semin Thromb Hemost 2000; Volume 26(Number 01): 067-074
DOI: 10.1055/s-2000-9806
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4663)

Molecular Biology of Ryudocan, an Endothelial Heparan Sulfate Proteoglycan

Tetsuhito Kojima
  • Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
Further Information

Publication History

Publication Date:
31 December 2000 (online)

 

ABSTRACT

Ryudocan is a type I integral membrane heparan sulfate proteoglycan, which was originally cloned from rat microvascular endothelial cells. We have cloned the cDNA of rat ryudocan. The deduced amino acids of ryudocan has homologous transmembrane and intracellular domains with syndecan but very distinct extracellular regions. We also cloned the human ryudocan cDNA, of which the gene localizes on the chromosome 20q12. To better understand the regulation of ryudocan expression, we have determined the structural organization of the human ryudocan gene. The human ryudocan gene extends approximately 24 kb and is divided into five exons that appear conserved in syndecan family members. The 5′-flanking sequences of the human ryudocan gene contain a variety of potential binding sites for transcription factors and are capable of functioning as a promoter. We purified human ryudocan and evaluated its interactions with several extracellular ligands. It was found that basic fibroblast growth factor (bFGF), midkine, and tissue factor pathway inhibitor exhibited significant ryudocan bindings. Heparitinase, but not chondroitin ABC lyase treatment, destroyed those ryudocan bindings; thus, the heparan sulfate chains of ryudocan appear to be responsible for those bindings. Immunohistochemical analysis revealed that ryudocan is expressed in peripheral nerve tissues, fibrous connective tissues, and placental trophoblasts. These findings suggest that ryudocan may possess multiple biologic functions, such as bFGF modulation, neurite growth promotion, and anticoagulation, via heparan sulfate-binding effectors in the cellular microenvironment.

REFERENCES

  • 1 Kojima T, Leone C W, Marchildon G A. Isolation and characterization of heparan sulfate proteoglycans produced by cloned rat microvascular endothelial cells.  J Biol Chem . 1992;  267 4859-4869
  • 2 Kojima T, Shworak N W, Rosenberg R D. Molecular cloning and expression of two distinct cDNA-encoding heparan sulfate proteoglycan core proteins from a rat endothelial cell line.  J Biol Chem . 1992;  267 4870-4877
  • 3 Bernfield M, Kokenyesi R, Kato M. Biology of the syndecans: A family of transmembrane heparan sulfate proteoglycans.  Annu Rev Cell Biol . 1992;  8 365-393
  • 4 Saunders S, Jalkanen M, O'Farrell S. Molecular cloning of syndecan, an integral membrane proteoglycan.  J Cell Biol . 1989;  108 1547-1556
  • 5 Kojima T, Inazawa J, Takamatsu J. Human ryudocan core protein: Molecular cloning and characterization of the cDNA, and chromosomal localization of the gene.  Biochem Biophys Res Commun . 1993;  190 814-822
  • 6 David G, van der Schueren B, Marynen P. Molecular cloning of amphiglycan, a novel integral membrane heparan sulfate proteoglycan expressed by epithelial and fibroblastic cells.  J Cell Biol . 1992;  118 961-969
  • 7 Baciu P C, Acaster C, Goetinck P E. Molecular cloning and genomic organization of chicken syndecan-4.  J Biol Chem . 1994;  269 696-703
  • 8 Kozak M. The scanning model for translation: An update.  J Cell Biol . 1989;  108 229-241
  • 9 Sabatini D D, Kreibich G, Morimoto T. Mechanisms for the incorporation of proteins in membranes and organellas.  J Cell Biol . 1982;  92 1-22
  • 10 Marynin P, Zhang J, Cassiman J-J. Partial primary structure of the 48- and 90-kilodalton core proteins of cell surface-associated heparan sulfate proteoglycans of lung fibroblast.  J Biol Chem . 1989;  264 7017-7024
  • 11 Heath C V, Denome R M, Cole C N. Spatial constraints on polyadenylation signal function.  J Biol Chem . 1990;  265 9098-9104
  • 12 Takagi A, Kojima T, Tsuzuki S. Structural organization and promoter activity of the human ryudocan gene.  J Biochem (Tokyo) . 1996;  119 979-984
  • 13 Shapiro M B, Shapiro M B, Senapathy P. RNA splice junctions of differnt classes of eukaryotes: Sequence statistics and functional implications in gene expression.  Nucleic Acids Res . 1987;  15 7155-7174
  • 14 Hinkes M T, Goldberger O A, Neumann P E. Organization and promoter activity of the mouse syndecan-1 gene.  J Biol Chem . 1993;  268 11440-11448
  • 15 Vihinen T, Auvinen P, Alanen-Kuki L. Structural organization and genomic sequence of mouse syndecan-1.  J Biol Chem . 1993;  268 17261-17269
  • 16 Tuzuki S, Kojima T, Katsumi A. Molecular cloning, genomic organization, promoter activity, and tissue-specific expression of the mouse ryudocan gene.  J Biochem . 1997;  122 17-24
  • 17 Imagawa M, Chiu R, Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: Protein kinase C and cAMP.  Cell . 1987;  51 251-260
  • 18 Leung K, Nabel G J. HTLV-1 transactivator induces interleukin-2 receptor expression through an NF-kB-like factor.  Nature . 1993;  333 776-778
  • 19 Dedrick R L, Jones P P. Sequence elements required for activity of a murine major histocompatibility complex class II promoter bind common and cell-type-specific nuclear factors.  Mol Cell Biol . 1990;  10 593-604
  • 20 Dailey L, Hanly S M, Roeder R G. Distinct transcription factors bind specifically to two regions of the human histone H4 promoter.  Proc Natl Acad Sci USA . 1986;  83 7241-7245
  • 21 Kim C W, Goldberger O A, Gallo R L. Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns.  Mol Biol Cell . 1994;  5 797-805
  • 22 Parada C A, Yoon J-B, Roeder R G. A novel LBP-1-mediated restriction of HIV-1 transcription at the level of elongation in vitro.  J Biol Chem . 1995;  270 2274-2283
  • 23 Shworak N W, Shirakawa M, Colliec-Jouault S. Pathway-specific regulation of the synthesis of anticoagulantly active heparan sulfate.  J Biol Chem . 1994;  269 24941-24952
  • 24 Kojima T, Katsumi A, Yamazaki T. Human ryudocan from endothelium-like cells binds basic fibroblast growth factor, midkine, and tissue factor pathway inhibitor.  J Biol Chem . 1996;  271 5914-5920
  • 25 Yayon A, Klagsbrun M, Esco J D. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor.  Cell . 1991;  64 841-848
  • 26 Bernfield M, Hooper K C. Possible regulation of FGF activity by syndecan, an integral membrane heparan sulfate proteoglycan.  Ann NY Acad Sci . 1991;  683 182-194
  • 27 Mali M, Andtfolk H, Miettinen H M. Suppression of tumor cell growth by syndecan-1 ectodomain.  J Biol Chem . 1994;  269 27795-27798
  • 28 Aviezer D, Hecht D, Safran M. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis.  Cell . 1994;  79 1005-1013
  • 29 Muramatsu H, Inui T, Kimura T. Localization of heparin-binding, neurite outgrowth and antigenic regions in midkine molecule.  Biochem Biophys Res Commun . 1994;  203 1131-1139
  • 30 Marcum J A, Atha D H, Fritze L MS. Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan.  J Biol Chem . 1986;  261 7507-7517
  • 31 Werling R W, Zacharski L R, Kisiel W. Distribution of tissue factor pathway inhibitor in normal and malignant human tissues.  Thromb Haemost . 1993;  69 366-369
  • 32 Wesselschmidt R, Likert K, Huang Z. Tissue factor pathway inhibitor: The carboxy-terminus is required for optimal inhibition of factor Xa.  Blood . 1992;  79 2004-2010
  • 33 Kojima S, Inui T, Kimura T. Midkine enhances fibrinolytic activity of bovine endothelial cells.  J Biol Chem . 1995;  270 9590-9596
  • 34 Kato M, Wang H, Bernfield M. Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains.  J Biol Chem . 1994;  269 18881-18889
  • 35 Shworak N W, Shirakawa M, Mulligan R C. Characterization of ryudocan glycosamino-glycan acceptor sites.  J Biol Chem . 1994;  269 21204-21214
  • 36 Colliec-Jouault S, Shworak N W, Liu J. Characterization of a cell mutant specifically defective in the synthesis of anticoagulantly active heparan sulfate.  J Biol Chem . 1994;  269 24953-24958
    >