Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A whole-genome association study of major determinants for allopurinol-related Stevens–Johnson syndrome and toxic epidermal necrolysis in Japanese patients

Abstract

Stevens–Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are severe, cutaneous adverse drug reactions that are rare but life threatening. Genetic biomarkers for allopurinol-related SJS/TEN in Japanese were examined in a genome-wide association study in which Japanese patients (n=14) were compared with ethnically matched healthy controls (n=991). Associations between 890 321 single nucleotide polymorphisms and allopurinol-related SJS/TEN were analyzed by the Fisher's exact test (dominant genotype mode). A total of 21 polymorphisms on chromosome 6 were significantly associated with allopurinol-related SJS/TEN. The strongest association was found at rs2734583 in BAT1, rs3094011 in HCP5 and GA005234 in MICC (P=2.44 × 10−8; odds ratio=66.8; 95% confidence interval, 19.8–225.0). rs9263726 in PSORS1C1, also significantly associated with allopurinol-related SJS/TEN, is in absolute linkage disequilibrium with human leukocyte antigen-B*5801, which is in strong association with allopurinol-induced SJS/TEN. The ease of typing rs9263726 makes it a useful biomarker for allopurinol-related SJS/TEN in Japanese.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Wortmann RL . Gout and hyperuricemia. Curr Opin Rheumatol 2002; 14: 281–286.

    Article  PubMed  Google Scholar 

  2. Chung WH, Hung SI, Chen YT . Human leukocyte antigens and drug hypersensitivity. Curr Opin Allergy Clin Immunol 2007; 7: 317–323.

    Article  CAS  PubMed  Google Scholar 

  3. Tohkin M, Ishiguro A, Kaniwa N, Saito Y, Kurose K, Hasegawa R . Prediction of severe adverse drug reactions using pharmacogenetic biomarkers. Drug Metab Pharmacokinet 2010; 25: 122–133.

    Article  CAS  PubMed  Google Scholar 

  4. Bastuji-Garin S, Rzany B, Stern RS, Shear NH, Naldi L, Roujeau JC . Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch Dermatol 1993; 129: 92–96.

    Article  CAS  PubMed  Google Scholar 

  5. French LE . Toxic epidermal necrolysis and Stevens Johnson syndrome: our current understanding. Allergol Int 2006; 55: 9–16.

    Article  PubMed  Google Scholar 

  6. Bowman C, Delrieu O . Immunogenetics of drug-induced skin blistering disorders. Part I: perspective. Pharmacogenomics 2009; 10: 601–621.

    Article  CAS  PubMed  Google Scholar 

  7. Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci USA 2005; 102: 4134–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tassaneeyakul W, Jantararoungtong T, Chen P, Lin PY, Tiamkao S, Khunarkornsiri U et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics 2009; 19: 704–709.

    Article  CAS  PubMed  Google Scholar 

  9. Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, Halevy S et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics 2008; 18: 99–107.

    Article  CAS  PubMed  Google Scholar 

  10. Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, Kurose K et al. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics 2008; 9: 1617–1622.

    Article  CAS  PubMed  Google Scholar 

  11. Wilke RA, Lin DW, Roden DM, Watkins PB, Flockhart D, Zineh I et al. Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 2007; 6: 904–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakamura Y . Pharmacogenomics and drug toxicity. N Engl J Med 2008; 359: 856–858.

    Article  CAS  PubMed  Google Scholar 

  13. Daly AK, Day CP . Genetic association studies in drug-induced liver injury. Semin Liver Dis 2009; 29: 400–411.

    Article  CAS  PubMed  Google Scholar 

  14. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao JH, Curtis D, Sham PC . Model-free analysis and permutation tests for allelic associations. Hum Hered 2000; 50: 133–139.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao JH . 2LD, GENECOUNTING and HAP: computer programs for linkage disequilibrium analysis. Bioinformatics 2004; 20: 1325–1326.

    Article  CAS  PubMed  Google Scholar 

  17. Holm SJ, Carlen LM, Mallbris L, Stahle-Backdahl M, O’Brien KP . Polymorphisms in the SEEK1 and SPR1 genes on 6p21.3 associate with psoriasis in the Swedish population. Exp Dermatol 2003; 12: 435–444.

    Article  CAS  PubMed  Google Scholar 

  18. Rahman P, Butt C, Siannis F, Farewell VT, Peddle L, Pellett FJ et al. Association of SEEK1 and psoriatic arthritis in two distinct Canadian populations. Ann Rheum Dis 2005; 64: 1370–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang XJ, He PP, Wang ZX, Zhang J, Li YB, Wang HY et al. Evidence for a major psoriasis susceptibility locus at 6p21(PSORS1) and a novel candidate region at 4q31 by genome-wide scan in Chinese hans. J Invest Dermatol 2002; 119: 1361–1366.

    Article  CAS  PubMed  Google Scholar 

  20. Suomela S, Elomaa O, Skoog T, Ala-aho R, Jeskanen L, Parssinen J et al. CCHCR1 is up-regulated in skin cancer and associated with EGFR expression. PLoS One 2009; 4: e6030.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tiala I, Wakkinen J, Suomela S, Puolakkainen P, Tammi R, Forsberg S et al. The PSORS1 locus gene CCHCR1 affects keratinocyte proliferation in transgenic mice. Hum Mol Genet 2008; 17: 1043–1051.

    Article  CAS  PubMed  Google Scholar 

  22. Suomela S, Kainu K, Onkamo P, Tiala I, Himberg J, Koskinen L et al. Clinical associations of the risk alleles of HLA-Cw6 and CCHCR1*WWCC in psoriasis. Acta Derm Venereol 2007; 87: 127–134.

    Article  PubMed  Google Scholar 

  23. Tiala I, Suomela S, Huuhtanen J, Wakkinen J, Holtta-Vuori M, Kainu K et al. The CCHCR1 (HCR) gene is relevant for skin steroidogenesis and downregulated in cultured psoriatic keratinocytes. J Mol Med 2007; 85: 589–601.

    Article  CAS  PubMed  Google Scholar 

  24. Hughes AR, Mosteller M, Bansal AT, Davies K, Haneline SA, Lai EH et al. Association of genetic variations in HLA-B region with hypersensitivity to abacavir in some, but not all, populations. Pharmacogenomics 2004; 5: 203–211.

    Article  CAS  PubMed  Google Scholar 

  25. Colombo S, Rauch A, Rotger M, Fellay J, Martinez R, Fux C et al. The HCP5 single-nucleotide polymorphism: a simple screening tool for prediction of hypersensitivity reaction to abacavir. J Infect Dis 2008; 198: 864–867.

    Article  CAS  PubMed  Google Scholar 

  26. Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 2008; 358: 568–579.

    Article  PubMed  Google Scholar 

  27. Teraoka Y, Naruse TK, Oka A, Matsuzawa Y, Shiina T, Iizuka M et al. Genetic polymorphisms in the cell growth regulated gene, SC1 telomeric of the HLA-C gene and lack of association of psoriasis vulgaris. Tissue Antigens 2000; 55: 206–211.

    Article  CAS  PubMed  Google Scholar 

  28. Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, Martino L et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci USA 2000; 97: 2709–2714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Altfeld M, Addo MM, Rosenberg ES, Hecht FM, Lee PK, Vogel M et al. Influence of HLA-B57 on clinical presentation and viral control during acute HIV-1 infection. AIDS 2003; 17: 2581–2591.

    Article  CAS  PubMed  Google Scholar 

  30. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007; 317: 944–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 2009; 41: 816–819.

    Article  CAS  PubMed  Google Scholar 

  32. Oka A, Tamiya G, Tomizawa M, Ota M, Katsuyama Y, Makino S et al. Association analysis using refined microsatellite markers localizes a susceptibility locus for psoriasis vulgaris within a 111 kb segment telomeric to the HLA-C gene. Hum Mol Genet 1999; 8: 2165–2170.

    Article  CAS  PubMed  Google Scholar 

  33. Chang YT, Hsu CY, Chou CT, Lin MW, Shiao YM, Tsai CY et al. The genetic polymorphisms of POU5F1 gene are associated with psoriasis vulgaris in Chinese. J Dermatol Sci 2007; 46: 153–156.

    Article  CAS  PubMed  Google Scholar 

  34. Okamoto K, Makino S, Yoshikawa Y, Takaki A, Nagatsuka Y, Ota M et al. Identification of I kappa BL as the second major histocompatibility complex-linked susceptibility locus for rheumatoid arthritis. Am J Hum Genet 2003; 72: 303–312.

    Article  CAS  PubMed  Google Scholar 

  35. Kilding R, Iles MM, Timms JM, Worthington J, Wilson AG . Additional genetic susceptibility for rheumatoid arthritis telomeric of the DRB1 locus. Arthritis Rheum 2004; 50: 763–769.

    Article  CAS  PubMed  Google Scholar 

  36. Quinones-Lombrana A, Lopez-Soto A, Ballina-Garcia FJ, Alperi-Lopez M, Queiro-Silva R, Lopez-Vazquez A et al. BAT1 promoter polymorphism is associated with rheumatoid arthritis susceptibility. J Rheumatol 2008; 35: 741–744.

    CAS  PubMed  Google Scholar 

  37. van Manen D, Kootstra NA, Boeser-Nunnink B, Handulle MA, van’t Wout AB, Schuitemaker H . Association of HLA-C and HCP5 gene regions with the clinical course of HIV-1 infection. AIDS 2009; 23: 19–28.

    Article  CAS  PubMed  Google Scholar 

  38. Catano G, Kulkarni H, He W, Marconi VC, Agan BK, Landrum M et al. HIV-1 disease-influencing effects associated with ZNRD1, HCP5 and HLA-C alleles are attributable mainly to either HLA-A10 or HLA-B*57 alleles. PLoS One 2008; 3: e3636.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Han Y, Lai J, Barditch-Crovo P, Gallant JE, Williams TM, Siliciano RF et al. The role of protective HCP5 and HLA-C associated polymorphisms in the control of HIV-1 replication in a subset of elite suppressors. AIDS 2008; 22: 541–544.

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka H, Akaza T, Juji T . Report of the Japanese Central Bone Marrow Data Center. Clin Transpl 1996; 9: 139–144.

    CAS  Google Scholar 

  41. Tokunaga K, Ishikawa Y, Ogawa A, Wang H, Mitsunaga S, Moriyama S et al. Sequence-based association analysis of HLA class I and II alleles in Japanese supports conservation of common haplotypes. Immunogenetics 1997; 46: 199–205.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the patients and physicians for their cooperation with this study. We also thank Riken Genesis for the Illumina BeadChip analysis and StaGen for the statistical analysis. This study was supported in part by a Health and Labor Science Research Grant (Research on Advanced Medical Technology) from the Ministry of Health, Labor and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M Tohkin.

Ethics declarations

Competing interests

The authors declare no conflict of interest except one member of JPDSC, Mitsubishi Tanabe Pharma, which is a distributor of allopurinol in Japan.

Appendix

Japan Pharmacogenomics Data Science Consortium (JPDSC)

The Japan Pharmacogenomics Data Science Consortium is composed of Astellas Pharma, Otsuka Pharmaceutical, Daiichi Sankyo, Taisho Pharmaceutical, Takeda Pharmaceutical and Mitsubishi Tanabe Pharma, and is chaired by Ichiro Nakaoka (Takeda Pharmaceutical).

PowerPoint slides

PowerPoint slide for Fig. 1

PowerPoint slide for Fig. 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohkin, M., Kaniwa, N., Saito, Y. et al. A whole-genome association study of major determinants for allopurinol-related Stevens–Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Pharmacogenomics J 13, 60–69 (2013). https://doi.org/10.1038/tpj.2011.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.41

Keywords

This article is cited by

Search

Quick links