Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Human myeloid dendritic cells transduced with an adenoviral interleukin-10 gene construct inhibit human skin graft rejection in humanized NOD-scid chimeric mice

Abstract

Human myeloid DC were generated from peripheral blood mononuclear cells by monocyte adhesion and subsequent culture with rhGM-CSF and rhIL-4. We transduced immature (day 5 of culture) myeloid DC with an E1-deleted replication-deficient adenoviral vector encoding the cytokine IL-10 (AdV IL-10) and a control adenovirus MX-17 (AdV MX 17). Human DC transduced with AdV IL-10 showed inhibition of the mixed leukocyte culture, reduced cell surface expression of co-stimulatory molecules (CD80/CD86) and were unable to produce the potent allo-stimulatory cytokine, interleukin-12. In order to test the in vivo properties of these cells a humanized immunodeficient mouse skin transplantation model was developed. Immunodeficient NOD-scid mice were engrafted with human skin, reconstituted via intraperitoneal injection with allogeneic mononuclear cells (MNC) mixed with 1 × 106 DC that were autologous to the skin donor and that had been transduced with either AdV IL-10 or AdV MX-17. Skin grafts were removed at day 7 and 14 after reconstitution and studied histologically for evidence of rejection. In animals that received DC modified with AdV IL-10 there was reduced skin graft rejection as characterized by reduced mononuclear cell infiltration and less dermo–epidermal junction destruction compared with those animals that received DC modified with the control virus alone. Injection of equivalent numbers of donor-derived fibroblasts transduced with AdV IL-10 were ineffective at modifying rejection of skin grafts. Immunosuppressive cytokine gene therapy targeting human DC is a novel means of inhibition of the alloimmune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Steinman R . The dendritic cell system and its role in immunogenicity Ann Rev Immunol 1991 9: 271–296

    Article  CAS  Google Scholar 

  2. Hart D . Dendritic cells: unique leukocyte populations which control the primary immune response Blood 1997 90: 3245–3287

    CAS  PubMed  Google Scholar 

  3. Banchereau J, Steinman R . Dendritic cells and the control of immunity Nature 1998 392: 245–251

    Article  CAS  PubMed  Google Scholar 

  4. Austyn J . Dendritic cells Curr Opin Hematol 1998 5: 3–15

    Article  CAS  PubMed  Google Scholar 

  5. Bottomley K . T cells and dendritic cells get intimate Science 1999 283: 1124–1125

    Article  Google Scholar 

  6. Remuzzi G . Cellular basis of long term organ transplant acceptance: pivotal role of intrathymic clonal deletion and thymic dependence of bone marrow chimerism associated tolerance Am J Kid Dis 1998 31: 187–212

    Article  Google Scholar 

  7. Larsen CP, Morris PJ, Austyn JM . Migration of dendritic leukocytes from cardiac allografts into host spleens J Exp Med 1990 171: 307–314

    Article  CAS  PubMed  Google Scholar 

  8. Austyn J, Larsen C . Migration pattern of dendritic leukocytes Transplantation 1990 49: 1–7

    Article  CAS  PubMed  Google Scholar 

  9. Mauri D, Pichler WJ . Involvement of CD80 in the generation of CD4+ cytotoxic T cells Immunol Res 1996 15: 126–140

    Article  CAS  PubMed  Google Scholar 

  10. Macatonia S et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells J Immunol 1995 154: 5071–5079

    CAS  PubMed  Google Scholar 

  11. Finkelman F et al. Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion J Immunol 1996 157: 1406–1414

    CAS  PubMed  Google Scholar 

  12. Cella M, Sallusto F, Lanzavecchia A . Origin, maturation and antigen presenting function of dendritic cells Curr Opin Immunol 1997 9: 10–16

    Article  CAS  PubMed  Google Scholar 

  13. Nickerson P et al. Cytokines and the Th1/Th2 paradigm in transplantation Curr Opin Nephrol Hyper 1994 6: 757–764

    CAS  Google Scholar 

  14. Thomson AW, Lu L . Are dendritic cells the key to liver transplant tolerance? Immunol Today 1999 20: 27–32

    Article  CAS  PubMed  Google Scholar 

  15. Steptoe R, Thomson A . Dendritic cells and tolerance induction Clin Exp Immunol 1996 105: 397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giannoukakis N, Thomson A, Robbins P . Gene therapy in transplantation Gene Therapy 1999 6: 1499–1511

    Article  CAS  PubMed  Google Scholar 

  17. Morel AS et al. Split activity of interleukin-10 on antigen capture and antigen presentation by human dendritic cells: definition of a maturative step Eur J Immunol 1997 27: 26–34

    Article  CAS  PubMed  Google Scholar 

  18. De Smedt T et al. Effect of interleukin-10 on dendritic cell maturation and function Eur J Immunol 1997 27: 1229–1235

    Article  CAS  PubMed  Google Scholar 

  19. Steinbrink K et al. Induction of tolerance by IL-10-treated dendritic cells J Immunol 1997 159: 4772–4780

    CAS  PubMed  Google Scholar 

  20. Buelens C et al. Interleukin-10 prevents the generation of dendritic cells from human peripheral blood mononuclear cells cultured with interleukin-4 and granulocyte/macrophage-colony-stimulating factor Eur J Immunol 1997 27: 756–762

    Article  CAS  PubMed  Google Scholar 

  21. Starzl T et al. Cell migration, chimerism, and graft acceptance Lancet 1992 339: 1579–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu L et al. Transduction of dendritic cells with adenoviral vectors encoding CTLA4-Ig markedly reduces their allostimulatory ability Transplantation 1998 65: (Suppl.) 106–109

    Article  Google Scholar 

  23. Zhong L et al. Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells Eur J Immunol 1999 29: 964–972

    Article  CAS  PubMed  Google Scholar 

  24. Aicher A et al. Successful retroviral mediated transduction of a reporter gene in human dendritic cells: feasibility of therapy with gene modified antigen presenting cells Exp Hematol 1997 25: 39–44

    CAS  PubMed  Google Scholar 

  25. Gabrilovich D et al. Retrovirus-induced immunosuppression via blocking of dendritic cell migration and down-regulation of adhesion molecules Immunology 1994 82: 82–87

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Thomson A, Lu L . Dendritic cells as regulators of immune reactivity: implications for transplantation Transplantation 1998 65: 1–8

    Article  Google Scholar 

  27. Dietz A, Vuk-Pavlovic S . High efficiency adenovirus-mediated gene transfer to human dendritic cells Blood 1998 91: 392–398

    CAS  PubMed  Google Scholar 

  28. Fu F et al. Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86−) prolong cardiac allograft survival in nonimmunosuppressed recipients Transplantation 1996 62: 659–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu L et al. Mouse bone marrow derived dendritic cell progenitors (NLDC 145+, MHC II+, B7.1dim, B7.2) induce allo-antigen specific hyporesponsivenesss in murine T lymphocytes Transplantation 1995 60: 1539–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee W et al. Phenotype, function, in vivo migration and survival of allogeneic dendritic cell precursors genetically engineered to express TGFB Transplantation 1998 66: 1810–1817

    Article  CAS  PubMed  Google Scholar 

  31. Lu L et al. Adenoviral delivery of CTLA4Ig into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients Gene Therapy 1999 6: 554–563

    Article  CAS  PubMed  Google Scholar 

  32. Takayama T et al. Retroviral delivery of viral interleukin 10 into myeloid dendritic cells markedly inhibits their allostimulatory activity and promotes the induction of T-cell hyporesponsiveness Transplantation 1998 66: 1567–1574

    Article  CAS  PubMed  Google Scholar 

  33. Min W-P et al. Dendritic cells genetically engineered to express Fas Ligand induce donor-specific hyporesponsivness and prolong allograft survival J Immunol 2000 164: 161–167

    Article  CAS  PubMed  Google Scholar 

  34. Qian S et al. Systemic administration of cellular interleukin-10 can exacerbate cardiac allograft rejection in mice Transplantation 1996 62: 1709–1714

    Article  CAS  PubMed  Google Scholar 

  35. Peguet Navarro J et al. Interleukin-10 inhibits the primary allogeneic T cell response to human epidermal Langerhans cells Eur J Immunol 1994 24: 884–891

    Article  CAS  PubMed  Google Scholar 

  36. Sultan P et al. Blockade of CD2-LFA-3 interactions protects human skin allografts in immunodeficient mouse/human chimeras Nat Biotechnol 1997 15: 759–762

    Article  CAS  PubMed  Google Scholar 

  37. Murray A et al. Human T cell mediated destruction of allogeneic dermal microvessels in a severe combined immunodeficient mouse Proc Natl Acad Sci USA 1994 91: 9146–9150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Briscoe D et al. The allogeneic response to cultured human skin equivalent in the hu-PBL-SCID mouse model of skin rejection Transplantation 1999 67: 1590–1599

    Article  CAS  PubMed  Google Scholar 

  39. Serreze D, Gaskins H, Leiter E . Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice J Immunol 1993 150: 2534–2543

    CAS  PubMed  Google Scholar 

  40. Shultz L et al. Multiple defects in innate and adaptive immunological function in NOD/LtSz-scid mice J Immunol 1995 154: 180–191

    CAS  PubMed  Google Scholar 

  41. Steinbrink K et al. Interleukin-10 treated human dendritic cells induce a melanoma-antigen specific anergy in CD8+ T cells resulting in a failure to lyse tumour cells Blood 1999 93: 1634–1642

    CAS  PubMed  Google Scholar 

  42. Coates T, Krishnan R, Russ G . Dendritic cells, tolerance and transplantation Nephrology 2000 5: 125–133

    Article  CAS  Google Scholar 

  43. Romani N et al. Proliferating dendritic cell progenitors in human blood J Exp Med 1994 180: 83–93

    Article  CAS  PubMed  Google Scholar 

  44. Martin H, Nash A, Andrews A . Cloning and characterisation of an ovine innterleukin-10-encoding cDNA Gene 1995 159: 187–191

    Article  CAS  PubMed  Google Scholar 

  45. Kanegae Y, Makimura M, Saito I . A simple and efficient method for purification of infectious recombinant adenovirus Jpn J Med Sci Biol 1994 47: 157–166

    Article  CAS  PubMed  Google Scholar 

  46. Nyberg-Hoffman C et al. Sensitivity and reproducibility in adenovirus titer determination Nat Med 1997 3: 808–811

    Article  CAS  PubMed  Google Scholar 

  47. He T-C et al. A simplified system for generating recombinant adenoviruses Proc Natl Acad Sci USA 1998 95: 2509–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chomczynski P, Sacchi N . Single step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction Anal Biochem 1987 162: 156–159

    Article  CAS  PubMed  Google Scholar 

  49. Fuga SAW, Fitzgerald SD, McGuire WL . A simple polymerase chain reaction method for detection method for detection and cloning of low abundance transcripts Biotechniques 1990 9: 206–211

    Google Scholar 

  50. Murray A et al. Dermal microvascular injury in the human peripheral blood lymphocyte reconstituted-severe combined immunodeficient (HuPBL-SCID) mouse/skin allograft model is T cell mediated and inhibited by a combination of cyclosporine and rapamycin Am J Pathol 1998 153: 627–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Coates T et al. Dendritic cell based TH2 cytokine gene therapy in sheep Transplant Proc 2001 33: 180–181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank the Australian Red Cross Blood Transfusion Service (Adelaide) for provision of buffy coats. Dr Coates is the recipient of an Australian Government National Health &Medical Research Council Post-Graduate Medical Research Scholarship. The laboratory is supported by grants from the Australian Kidney Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coates, P., Krishnan, R., Kireta, S. et al. Human myeloid dendritic cells transduced with an adenoviral interleukin-10 gene construct inhibit human skin graft rejection in humanized NOD-scid chimeric mice. Gene Ther 8, 1224–1233 (2001). https://doi.org/10.1038/sj.gt.3301513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301513

Keywords

This article is cited by

Search

Quick links