Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Distinctive gene expression signatures in rheumatoid arthritis synovial tissue fibroblast cells: correlates with disease activity

Abstract

Gene expression profiling of rheumatoid arthritis (RA) and osteoarthritis (OA) joint tissue samples provides a unique insight into the gene signatures involved in disease development and progression. Fibroblast-like synovial (FLS) cells were obtained from RA, OA and control trauma joint tissues (non-RA, non-OA) and RNA was analyzed by Affymetrix microarray. Thirty-four genes specific to RA and OA FLS cells were identified (P<0.05). HOXD10, HOXD11, HOXD13, CCL8 and LIM homeobox 2 were highly and exclusively expressed in RA and CLU, sarcoglycan-γ, GPR64, POU3F3, peroxisome proliferative activated receptor-γ and tripartite motif-containing 2 were expressed only in OA. The data also revealed expression heterogeneity for patients with the same disease. To address disease heterogeneity in RA FLS cells, we examined the effects of clinical disease parameters (Health Assessment Questionnaire (HAQ) score, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), rheumatoid factor (RF)) and drug therapies (methotrexate/prednisone) on RA FLS cell gene expression. Eight specific and unique correlations were identified: human leukocyte antigen (HLA)-DQA2 with HAQ score; Clec12A with RF; MAB21L2, SIAT7E, HAPLN1 and BAIAP2L1 with CRP level; RGMB and OSAP with ESR. Signature RA FLS cell gene expression profiles may provide insights into disease pathogenesis and have utility in diagnosis, prognosis and drug responsiveness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gabriel SE . The epidemiology of rheumatoid arthritis. Rheum Dis Clin North Am 2001; 27: 269–281.

    Article  CAS  Google Scholar 

  2. Lee DM, Weinblatt ME . Rheumatoid arthritis. Lancet 2001; 358: 903–911.

    Article  CAS  Google Scholar 

  3. Firestein GS . Immunologic mechanisms in the pathogenesis of rheumatoid arthritis. J Clin Rheumatol 2005; 11 (3 Suppl): S39–S44.

    Article  Google Scholar 

  4. Mor A, Abramson SB, Pillinger MH . The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clin Immunol 2005; 115: 118–128.

    Article  CAS  Google Scholar 

  5. Melnyk VO, Shipley GD, Sternfeld MD, Sherman L, Rosenbaum JT . Synoviocytes synthesize, bind, and respond to basic fibroblast growth factor. Arthritis Rheum 1990; 33: 493–500.

    Article  CAS  Google Scholar 

  6. Ota F, Maeshima A, Yamashita S, Ikeuchi H, Kaneko Y, Kuroiwa T et al. Activin A induces cell proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum 2003; 48: 2442–2449.

    Article  CAS  Google Scholar 

  7. Lindberg J, Af Klint E, Ulfgren AK, Stark A, Andersson T, Nilsson P et al. Variability in synovial inflammation in rheumatoid arthritis investigated by microarray technology. Arthritis Res Ther 2006; 8: R47.

    Article  Google Scholar 

  8. Ruschpler P, Lorenz P, Eichler W, Koczan D, Hanel C, Scholz R et al. High CXCR3 expression in synovial mast cells associated with CXCL9 and CXCL10 expression in inflammatory synovial tissues of patients with rheumatoid arthritis. Arthritis Res Ther 2003; 5: R241–R252.

    Article  CAS  Google Scholar 

  9. Szodoray P, Alex P, Frank MB, Turner M, Turner S, Knowlton N et al. A genome-scale assessment of peripheral blood B-cell molecular homeostasis in patients with rheumatoid arthritis. Rheumatology (Oxford) 2006; 45: 1466–1476.

    Article  CAS  Google Scholar 

  10. Bovin LF, Rieneck K, Workman C, Nielsen H, Sorensen SF, Skjodt H et al. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor. Immunol Lett 2004; 93: 217–226.

    Article  CAS  Google Scholar 

  11. Kasperkovitz PV, Timmer TC, Smeets TJ, Verbeet NL, Tak PP, van Baarsen LG et al. Fibroblast-like synoviocytes derived from patients with rheumatoid arthritis show the imprint of synovial tissue heterogeneity: evidence of a link between an increased myofibroblast-like phenotype and high-inflammation synovitis. Arthritis Rheum 2005; 52: 430–441.

    Article  Google Scholar 

  12. Taberner M, Scott KF, Weininger L, Mackay CR, Rolph MS . Overlapping gene expression profiles in rheumatoid fibroblast-like synoviocytes induced by the proinflammatory cytokines interleukin-1 beta and tumor necrosis factor. Inflamm Res 2005; 54: 10–16.

    Article  CAS  Google Scholar 

  13. Spurrell DR, Oldford SA, Frost T, Larsen B, Codner D, Edgecombe A et al. Discordant expression of HLA class II-associated co-chaperones and HLA-DRB alleles in cultured fibroblast-like synoviocytes. Hum Immunol 2004; 65: 1516–1529.

    Article  CAS  Google Scholar 

  14. Haringman JJ, Smeets TJ, Reinders-Blankert P, Tak PP . Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann Rheum Dis 2006; 65: 294–300.

    Article  CAS  Google Scholar 

  15. Lee BO, Ishihara K, Denno K, Kobune Y, Itoh M, Muraoka O et al. Elevated levels of the soluble form of bone marrow stromal cell antigen 1 in the sera of patients with severe rheumatoid arthritis. Arthritis Rheum 1996; 39: 629–637.

    Article  CAS  Google Scholar 

  16. Devauchelle V, Marion S, Cagnard N, Mistou S, Falgarone G, Breban M et al. DNA microarray allows molecular profiling of rheumatoid arthritis and identification of pathophysiological targets. Genes Immunol 2004; 5: 597–608.

    Article  CAS  Google Scholar 

  17. Paulsen F, Pufe T, Conradi L, Varoga D, Tsokos M, Papendieck J et al. Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes. J Pathol 2002; 198: 369–377.

    Article  CAS  Google Scholar 

  18. van der Pouw Kraan TC, van Gaalen FA, Huizinga TW, Pieterman E, Breedveld FC, Verweij CL . Discovery of distinctive gene expression profiles in rheumatoid synovium using cDNA microarray technology: evidence for the existence of multiple pathways of tissue destruction and repair. Genes Immunol 2003; 4: 187–196.

    Article  CAS  Google Scholar 

  19. van der Pouw Kraan TC, van Gaalen FA, Kasperkovitz PV, Verbeet NL, Smeets TJ, Kraan MC et al. Rheumatoid arthritis is a heterogeneous disease: evidence for differences in the activation of the STAT-1 pathway between rheumatoid tissues. Arthritis Rheum 2003; 48: 2132–2145.

    Article  CAS  Google Scholar 

  20. Feldmann M, Maini RN . Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 2001; 19: 163–196.

    Article  CAS  Google Scholar 

  21. Steenvoorden MM, Tolboom TC, van der Pluijm G, Lowik C, Visser CP, DeGroot J et al. Transition of healthy to diseased synovial tissue in rheumatoid arthritis is associated with gain of mesenchymal/fibrotic characteristics. Arthritis Res Ther 2006; 8: R165.

    Article  Google Scholar 

  22. Mattey DL, Dawes PT, Nixon NB, Slater H . Transforming growth factor beta 1 and interleukin 4 induced alpha smooth muscle actin expression and myofibroblast-like differentiation in human synovial fibroblasts in vitro: modulation by basic fibroblast growth factor. Ann Rheum Dis 1997; 56: 426–431.

    Article  CAS  Google Scholar 

  23. Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S . Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 2003; 171: 380–389.

    Article  CAS  Google Scholar 

  24. Goodman FR . Limb malformations and the human HOX genes. Am J Med Genet 2002; 112: 256–265.

    Article  Google Scholar 

  25. Richter K, Wirta V, Dahl L, Bruce S, Lundeberg J, Carlsson L et al. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression. BMC Genomics 2006; 7: 75.

    Article  Google Scholar 

  26. Rhee H, Polak L, Fuchs E . Lhx2 maintains stem cell character in hair follicles. Science 2006; 312: 1946–1949.

    Article  CAS  Google Scholar 

  27. Salsi V, Zappavigna V . Hoxd13 and Hoxa13 directly control the expression of the EphA7 Ephrin tyrosine kinase receptor in developing limbs. J Biol Chem 2006; 281: 1992–1999.

    Article  CAS  Google Scholar 

  28. Nguyen NC, Hirose T, Nakazawa M, Kobata T, Nakamura H, Nishioka K et al. Expression of HOXD9 in fibroblast-like synoviocytes from rheumatoid arthritis patients. Int J Mol Med 2002; 10: 41–48.

    PubMed  Google Scholar 

  29. Khoa ND, Nakazawa M, Hasunuma T, Nakajima T, Nakamura H, Kobata T et al. Potential role of HOXD9 in synoviocyte proliferation. Arthritis Rheum 2001; 44: 1013–1021.

    Article  CAS  Google Scholar 

  30. Fowler Jr MJ, Neff MS, Borghaei RC, Pease EA, Mochan E, Thornton RD . Induction of bone morphogenetic protein-2 by interleukin-1 in human fibroblasts. Biochem Biophys Res Commun 1998; 248: 450–453.

    Article  Google Scholar 

  31. Lories RJ, Derese I, Ceuppens JL, Luyten FP . Bone morphogenetic proteins 2 and 6, expressed in arthritic synovium, are regulated by proinflammatory cytokines and differentially modulate fibroblast-like synoviocyte apoptosis. Arthritis Rheum 2003; 48: 2807–2818.

    Article  CAS  Google Scholar 

  32. Cheon H, Boyle DL, Firestein GS . Wnt1 inducible signaling pathway protein-3 regulation and microsatellite structure in arthritis. J Rheumatol 2004; 31: 2106–2114.

    CAS  PubMed  Google Scholar 

  33. Gu J, Marker-Hermann E, Baeten D, Tsai WC, Gladman D, Xiong M et al. A 588-gene microarray analysis of the peripheral blood mononuclear cells of spondyloarthropathy patients. Rheumatology (Oxford) 2002; 41: 759–766.

    Article  CAS  Google Scholar 

  34. Sivas F, Barca N, Onder M, Ozoran K . The relation between joint erosion and generalized osteoporosis and disease activity in patients with rheumatoid arthritis. Rheumatol Int 2006; 26: 896–899.

    Article  Google Scholar 

  35. Mahmoud RK, El-Ansary AK, El-Eishi HH, Kamal HM, El-Saeed NH . Matrix metalloproteinases MMP-3 and MMP-1 levels in sera and synovial fluids in patients with rheumatoid arthritis and osteoarthritis. Ital J Biochem 2005; 54: 248–257.

    CAS  PubMed  Google Scholar 

  36. Baldessari D, Badaloni A, Longhi R, Zappavigna V, Consalez GG . MAB21L2, a vertebrate member of the male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1. BMC Cell Biol 2004; 5: 48.

    Article  Google Scholar 

  37. Watanabe H, Yamada Y . Mice lacking link protein develop dwarfism and craniofacial abnormalities. Nat Genet 1999; 21: 225–229.

    Article  CAS  Google Scholar 

  38. Lorenz P, Ruschpler P, Koczan D, Stiehl P, Thiesen HJ . From transcriptome to proteome: differentially expressed proteins identified in synovial tissue of patients suffering from rheumatoid arthritis and osteoarthritis by an initial screen with a panel of 791 antibodies. Proteomics 2003; 3: 991–1002.

    Article  CAS  Google Scholar 

  39. Shouda T, Yoshida T, Hanada T, Wakioka T, Oishi M, Miyoshi K et al. Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J Clin Invest 2001; 108: 1781–1788.

    Article  CAS  Google Scholar 

  40. Samad TA, Rebbapragada A, Bell E, Zhang Y, Sidis Y, Jeong SJ et al. DRAGON, a bone morphogenetic protein co-receptor. J Biol Chem 2005; 280: 14122–14129.

    Article  CAS  Google Scholar 

  41. Rockett JC . Genomic and proteomic techniques applied to reproductive biology. Genome Biol 2001; 2: REPORTS4020.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hock BD, O'Donnell JL, Taylor K, Steinkasserer A, McKenzie JL, Rothwell AG et al. Levels of the soluble forms of CD80, CD86, and CD83 are elevated in the synovial fluid of rheumatoid arthritis patients. Tissue Antigens 2006; 67: 57–60.

    Article  CAS  Google Scholar 

  43. Seyler TM, Park YW, Takemura S, Bram RJ, Kurtin PJ, Goronzy JJ et al. BLyS and APRIL in rheumatoid arthritis. J Clin Invest 2005; 115: 3083–3092.

    Article  CAS  Google Scholar 

  44. Ruth JH, Haas CS, Park CC, Amin MA, Martinez RJ, Haines III GK et al. CXCL16-mediated cell recruitment to rheumatoid arthritis synovial tissue and murine lymph nodes is dependent upon the MAPK pathway. Arthritis Rheum 2006; 54: 765–778.

    Article  CAS  Google Scholar 

  45. Hietala MA, Nandakumar KS, Persson L, Fahlen S, Holmdahl R, Pekna M . Complement activation by both classical and alternative pathways is critical for the effector phase of arthritis. Eur J Immunol 2004; 34: 1208–1216.

    Article  CAS  Google Scholar 

  46. Kraan MC, Reece RJ, Barg EC, Smeets TJ, Farnell J, Rosenburg R et al. Modulation of inflammation and metalloproteinase expression in synovial tissue by leflunomide and methotrexate in patients with active rheumatoid arthritis. Findings in a prospective, randomized, double-blind, parallel-design clinical trial in thirty-nine patients at two centers. Arthritis Rheum 2000; 43: 1820–1830.

    Article  CAS  Google Scholar 

  47. Conn DL, Lim SS . New role for an old friend: prednisone is a disease-modifying agent in early rheumatoid arthritis. Curr Opin Rheumatol 2003; 15: 193–196.

    Article  CAS  Google Scholar 

  48. Kavanaugh AF, Davis LS, Nichols LA, Norris SH, Rothlein R, Scharschmidt LA et al. Treatment of refractory rheumatoid arthritis with a monoclonal antibody to intercellular adhesion molecule 1. Arthritis Rheum 1994; 37: 992–999.

    Article  CAS  Google Scholar 

  49. Gerlag DM, Haringman JJ, Smeets TJ, Zwinderman AH, Kraan MC, Laud PJ et al. Effects of oral prednisolone on biomarkers in synovial tissue and clinical improvement in rheumatoid arthritis. Arthritis Rheum 2004; 50: 3783–3791.

    Article  CAS  Google Scholar 

  50. Lee L, Liu J, Manuel J, Gorczynski RM . A role for the immunomodulatory molecules CD200 and CD200R in regulating bone formation. Immunol Lett 2006; 105: 150–158.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Susan Dubbin for coordinating patient sample collection and Mileidys Alvarez and Thomas Burian for their technical assistance. The work was supported by grants from Genome Canada, the McLaughlin Centre for Molecular Medicine, Toronto and The Arthritis Society of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E N Fish.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galligan, C., Baig, E., Bykerk, V. et al. Distinctive gene expression signatures in rheumatoid arthritis synovial tissue fibroblast cells: correlates with disease activity. Genes Immun 8, 480–491 (2007). https://doi.org/10.1038/sj.gene.6364400

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364400

Keywords

This article is cited by

Search

Quick links