Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multiple mechanisms that regulate p53 activity and cell fate

Abstract

The tumour suppressor p53 has a central role in the response to cellular stress. Activated p53 transcriptionally regulates hundreds of genes that are involved in multiple biological processes, including in DNA damage repair, cell cycle arrest, apoptosis and senescence. In the context of DNA damage, p53 is thought to be a decision-making transcription factor that selectively activates genes as part of specific gene expression programmes to determine cellular outcomes. In this Review, we discuss the multiple molecular mechanisms of p53 regulation and how they modulate the induction of apoptosis or cell cycle arrest following DNA damage. Specifically, we discuss how the interaction of p53 with DNA and chromatin affects gene expression, and how p53 post-translational modifications, its temporal expression dynamics and its interactions with chromatin regulators and transcription factors influence cell fate. These multiple layers of regulation enable p53 to execute cellular responses that are appropriate for specific cellular states and environmental conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The p53 binding site.
Fig. 2: Regulation of p53 target genes by post-translational modification and interactions with chromatin regulators and transcription factors.
Fig. 3: p53 dynamics regulate gene expression.
Fig. 4: Regulation of p53-mediated cell fate outcomes.

Similar content being viewed by others

References

  1. Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979).

    CAS  PubMed  Google Scholar 

  2. Linzer, D. I. & Levine, A. J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43–52 (1979).

    CAS  PubMed  Google Scholar 

  3. Baker, S. J. et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244, 217–221 (1989).

    CAS  PubMed  Google Scholar 

  4. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    CAS  PubMed  Google Scholar 

  5. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dolgin, E. The most popular genes in the human genome. Nature 551, 427–431 (2017).

    PubMed  Google Scholar 

  8. Hager, K. M. & Gu, W. Understanding the non-canonical pathways involved in p53-mediated tumor suppression. Carcinogenesis 35, 740–746 (2014).

    CAS  PubMed  Google Scholar 

  9. Kang, R., Kroemer, G. & Tang, D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic. Biol. Med. 133, 162–168 (2019).

    Article  PubMed  Google Scholar 

  10. Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393–405 (2015).

    CAS  PubMed  Google Scholar 

  11. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    CAS  PubMed  Google Scholar 

  12. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    CAS  PubMed  Google Scholar 

  13. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).

    CAS  PubMed  Google Scholar 

  14. Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997).

    CAS  PubMed  Google Scholar 

  15. Barak, Y., Juven, T., Haffner, R. & Oren, M. mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461–468 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Aylon, Y. & Oren, M. The paradox of p53: what, how, and why? Cold Spring Harb. Perspect. Med. 6, a026328 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Kannan, K. et al. DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf-1. Oncogene 20, 3449–3455 (2001).

    CAS  PubMed  Google Scholar 

  18. Madden, S. L., Galella, E. A., Zhu, J., Bertelsen, A. H. & Beaudry, G. A. SAGE transcript profiles for p53-dependent growth regulation. Oncogene 15, 1079–1085 (1997).

    CAS  PubMed  Google Scholar 

  19. Mirza, A. et al. Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Oncogene 22, 3645–3654 (2003).

    CAS  PubMed  Google Scholar 

  20. Kaeser, M. D. & Iggo, R. D. Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc. Natl Acad. Sci. USA 99, 95–100 (2002).

    CAS  PubMed  Google Scholar 

  21. Kracikova, M., Akiri, G., George, A., Sachidanandam, R. & Aaronson, S. A. A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis. Cell Death Differ. 20, 576–588 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Smeenk, L. et al. Role of p53 serine 46 in p53 target gene regulation. PLOS ONE 6, e17574 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cui, F., Sirotin, M. V. & Zhurkin, V. B. Impact of Alu repeats on the evolution of human p53 binding sites. Biol. Direct 6, 2 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Smeenk, L. et al. Characterization of genome-wide p53-binding sites upon stress response. Nucleic Acids Res. 36, 3639–3654 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei, C. L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006).

    CAS  Google Scholar 

  26. Botcheva, K., McCorkle, S. R., McCombie, W. R., Dunn, J. J. & Anderson, C. W. Distinct p53 genomic binding patterns in normal and cancer-derived human cells. Cell Cycle 10, 4237–4249 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nguyen, T. T. et al. Revealing a human p53 universe. Nucleic Acids Res. 46, 8153–8167 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Fischer, M. Census and evaluation of p53 target genes. Oncogene 36, 3943–3956 (2017). This study provides a systematic compilation of p53 target genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Juven, T., Barak, Y., Zauberman, A., George, D. L. & Oren, M. Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 8, 3411–3416 (1993).

    CAS  PubMed  Google Scholar 

  30. Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 9, 402–412 (2008).

    CAS  PubMed  Google Scholar 

  31. Sullivan, K. D., Galbraith, M. D., Andrysik, Z. & Espinosa, J. M. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 25, 133–143 (2018).

    CAS  PubMed  Google Scholar 

  32. Koeppel, M. et al. Crosstalk between c-Jun and TAp73α/β contributes to the apoptosis-survival balance. Nucleic Acids Res. 39, 6069–6085 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Su, D. et al. Interactions of chromatin context, binding site sequence content, and sequence evolution in stress-induced p53 occupancy and transactivation. PLOS Genet. 11, e1004885 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Bao, F., LoVerso, P. R., Fisk, J. N., Zhurkin, V. B. & Cui, F. p53 binding sites in normal and cancer cells are characterized by distinct chromatin context. Cell Cycle 16, 2073–2085 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Korkmaz, G. et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat. Biotechnol. 34, 192–198 (2016).

    CAS  PubMed  Google Scholar 

  36. Fischer, M., Grossmann, P., Padi, M. & DeCaprio, J. A. Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks. Nucleic Acids Res. 44, 6070–6086 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Allen, M. A. et al. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. eLife 3, e02200 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Melo, C. A. et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol. Cell 49, 524–535 (2013).

    CAS  PubMed  Google Scholar 

  39. Li, W., Notani, D. & Rosenfeld, M. G. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat. Rev. Genet. 17, 207–223 (2016).

    CAS  PubMed  Google Scholar 

  40. Verfaillie, A. et al. Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic. Genome Res. 26, 882–895 (2016). This study provides a systematic reanalysis of p53 DNA binding and screening of all the p53 bound sites for transcription activation in vitro.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Younger, S. T. & Rinn, J. L. p53 regulates enhancer accessibility and activity in response to DNA damage. Nucleic Acids Res. 45, 9889–9900 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Espinosa, J. M., Verdun, R. E. & Emerson, B. M. p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol. Cell 12, 1015–1027 (2003).

    CAS  PubMed  Google Scholar 

  43. Loughery, J., Cox, M., Smith, L. M. & Meek, D. W. Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Res. 42, 7666–7680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, M. et al. Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Mol. Cell 46, 30–42 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, B., Xiao, Z., Ko, H. L. & Ren, E. C. The p53 response element and transcriptional repression. Cell Cycle 9, 870–879 (2010).

    CAS  PubMed  Google Scholar 

  46. Wang, B., Xiao, Z. & Ren, E. C. Redefining the p53 response element. Proc. Natl Acad. Sci. USA 106, 14373–14378 (2009).

    CAS  PubMed  Google Scholar 

  47. Candau, R. et al. Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity. Oncogene 15, 807–816 (1997).

    CAS  PubMed  Google Scholar 

  48. Fields, S. & Jang, S. K. Presence of a potent transcription activating sequence in the p53 protein. Science 249, 1046–1049 (1990).

    CAS  PubMed  Google Scholar 

  49. Raycroft, L., Wu, H. Y. & Lozano, G. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249, 1049–1051 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Brady, C. A. et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145, 571–583 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Walker, K. K. & Levine, A. J. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl Acad. Sci. USA 93, 15335–15340 (1996).

    CAS  PubMed  Google Scholar 

  52. Pavletich, N. P., Chambers, K. A. & Pabo, C. O. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev. 7, 2556–2564 (1993).

    CAS  PubMed  Google Scholar 

  53. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    CAS  PubMed  Google Scholar 

  54. Kitayner, M. et al. Structural basis of DNA recognition by p53 tetramers. Mol. Cell 22, 741–753 (2006).

    CAS  PubMed  Google Scholar 

  55. Kitayner, M. et al. Diversity in DNA recognition by p53 revealed by crystal structures with Hoogsteen base pairs. Nat. Struct. Mol. Biol. 17, 423–429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Weinberg, R. L., Veprintsev, D. B. & Fersht, A. R. Cooperative binding of tetrameric p53 to DNA. J. Mol. Biol. 341, 1145–1159 (2004).

    CAS  PubMed  Google Scholar 

  57. Wang, Y., Schwedes, J. F., Parks, D., Mann, K. & Tegtmeyer, P. Interaction of p53 with its consensus DNA-binding site. Mol. Cell. Biol. 15, 2157–2165 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Veprintsev, D. B. et al. Core domain interactions in full-length p53 in solution. Proc. Natl Acad. Sci. USA 103, 2115–2119 (2006).

    CAS  PubMed  Google Scholar 

  59. Clore, G. M. et al. Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nat. Struct. Biol. 2, 321–333 (1995).

    CAS  PubMed  Google Scholar 

  60. Davison, T. S., Yin, P., Nie, E., Kay, C. & Arrowsmith, C. H. Characterization of the oligomerization defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome. Oncogene 17, 651–656 (1998).

    CAS  PubMed  Google Scholar 

  61. Imagawa, T., Terai, T., Yamada, Y., Kamada, R. & Sakaguchi, K. Evaluation of transcriptional activity of p53 in individual living mammalian cells. Anal. Biochem. 387, 249–256 (2009).

    CAS  PubMed  Google Scholar 

  62. Kawaguchi, T. et al. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene 24, 6976–6981 (2005).

    CAS  PubMed  Google Scholar 

  63. Fischer, N. W., Prodeus, A., Malkin, D. & Gariepy, J. p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle 15, 3210–3219 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gaglia, G., Guan, Y., Shah, J. V. & Lahav, G. Activation and control of p53 tetramerization in individual living cells. Proc. Natl Acad. Sci. USA 110, 15497–15501 (2013).

    CAS  PubMed  Google Scholar 

  65. Schlereth, K. et al. Characterization of the p53 cistrome—DNA binding cooperativity dissects p53’s tumor suppressor functions. PLOS Genet. 9, e1003726 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Timofeev, O. et al. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep. 3, 1512–1525 (2013).

    CAS  PubMed  Google Scholar 

  67. Bell, S., Klein, C., Muller, L., Hansen, S. & Buchner, J. p53 contains large unstructured regions in its native state. J. Mol. Biol. 322, 917–927 (2002).

    CAS  PubMed  Google Scholar 

  68. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    CAS  PubMed  Google Scholar 

  69. Hupp, T. R., Meek, D. W., Midgley, C. A. & Lane, D. P. Regulation of the specific DNA binding function of p53. Cell 71, 875–886 (1992).

    CAS  PubMed  Google Scholar 

  70. Luo, J. et al. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl Acad. Sci. USA 101, 2259–2264 (2004).

    CAS  PubMed  Google Scholar 

  71. Ayed, A. et al. Latent and active p53 are identical in conformation. Nat. Struct. Biol. 8, 756–760 (2001).

    CAS  PubMed  Google Scholar 

  72. Anderson, M. E., Woelker, B., Reed, M., Wang, P. & Tegtmeyer, P. Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation. Mol. Cell. Biol. 17, 6255–6264 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, H. et al. p53 requires an intact C-terminal domain for DNA binding and transactivation. J. Mol. Biol. 415, 843–854 (2012).

    CAS  PubMed  Google Scholar 

  74. McKinney, K., Mattia, M., Gottifredi, V. & Prives, C. p53 linear diffusion along DNA requires its C terminus. Mol. Cell 16, 413–424 (2004).

    CAS  PubMed  Google Scholar 

  75. Tafvizi, A., Huang, F., Fersht, A. R., Mirny, L. A. & van Oijen, A. M. A single-molecule characterization of p53 search on DNA. Proc. Natl Acad. Sci. USA 108, 563–568 (2011).

    CAS  PubMed  Google Scholar 

  76. Tafvizi, A. et al. Tumor suppressor p53 slides on DNA with low friction and high stability. Biophys. J. 95, L01–03 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gohler, T. et al. Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J. Biol. Chem. 277, 41192–41203 (2002).

    PubMed  Google Scholar 

  78. McKinney, K. & Prives, C. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol. Cell. Biol. 22, 6797–6808 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Espinosa, J. M. & Emerson, B. M. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol. Cell 8, 57–69 (2001). This early study shows the preference of p53 for binding chromatin and the role of chromatin regulators in p53 binding.

  80. Laptenko, O., Tong, D. R., Manfredi, J. & Prives, C. The tail that wags the dog: how the disordered C-terminal domain controls the transcriptional activities of the p53 tumor-suppressor protein. Trends Biochem. Sci. 41, 1022–1034 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hamard, P. J., Lukin, D. J. & Manfredi, J. J. p53 basic C terminus regulates p53 functions through DNA binding modulation of subset of target genes. J. Biol. Chem. 287, 22397–22407 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hamard, P. J. et al. The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo. Genes Dev. 27, 1868–1885 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Simeonova, I. et al. Mutant mice lacking the p53 C-terminal domain model telomere syndromes. Cell Rep. 3, 2046–2058 (2013).

    CAS  PubMed  Google Scholar 

  84. el-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W. & Vogelstein, B. Definition of a consensus binding site for p53. Nat. Genet. 1, 45–49 (1992). This study shows the initial identification of the p53 binding site.

  85. Funk, W. D., Pak, D. T., Karas, R. H., Wright, W. E. & Shay, J. W. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol. 12, 2866–2871 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tonelli, C. et al. Genome-wide analysis of p53 transcriptional programs in B cells upon exposure to genotoxic stress in vivo. Oncotarget 6, 24611–24626 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Horvath, M. M., Wang, X., Resnick, M. A. & Bell, D. A. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis. PLOS Genet. 3, e127 (2007).

    PubMed  PubMed Central  Google Scholar 

  88. Rouault, J. P. et al. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat. Genet. 14, 482–486 (1996).

    CAS  PubMed  Google Scholar 

  89. Chang, G. S. et al. A comprehensive and high-resolution genome-wide response of p53 to stress. Cell Rep. 8, 514–527 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tokino, T. et al. p53 tagged sites from human genomic DNA. Hum. Mol. Genet. 3, 1537–1542 (1994).

    CAS  PubMed  Google Scholar 

  91. Beno, I., Rosenthal, K., Levitine, M., Shaulov, L. & Haran, T. E. Sequence-dependent cooperative binding of p53 to DNA targets and its relationship to the structural properties of the DNA targets. Nucleic Acids Res. 39, 1919–1932 (2011).

    CAS  PubMed  Google Scholar 

  92. Tomso, D. J. et al. Functionally distinct polymorphic sequences in the human genome that are targets for p53 transactivation. Proc. Natl Acad. Sci. USA 102, 6431–6436 (2005).

    CAS  PubMed  Google Scholar 

  93. Veprintsev, D. B. & Fersht, A. R. Algorithm for prediction of tumour suppressor p53 affinity for binding sites in DNA. Nucleic Acids Res. 36, 1589–1598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Riley, T., Yu, X., Sontag, E. & Levine, A. The p53HMM algorithm: using profile hidden markov models to detect p53-responsive genes. BMC Bioinformatics 10, 111 (2009).

    PubMed  PubMed Central  Google Scholar 

  95. Hoh, J. et al. The p53MH algorithm and its application in detecting p53-responsive genes. Proc. Natl Acad. Sci. USA 99, 8467–8472 (2002).

    CAS  PubMed  Google Scholar 

  96. Tebaldi, T. et al. Whole-genome cartography of p53 response elements ranked on transactivation potential. BMC Genomics 16, 464 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Hafner, A., Lahav, G. & Stewart-Ornstein, J. Stereotyped p53 binding tuned by chromatin accessibility. Preprint at bioRxiv. https://doi.org/10.1101/177667 (2017).

    Article  Google Scholar 

  98. Inga, A., Storici, F., Darden, T. A. & Resnick, M. A. Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence. Mol. Cell. Biol. 22, 8612–8625 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Noureddine, M. A. et al. Probing the functional impact of sequence variation on p53-DNA interactions using a novel microsphere assay for protein-DNA binding with human cell extracts. PLOS Genet. 5, e1000462 (2009).

    PubMed  PubMed Central  Google Scholar 

  100. Qian, H., Wang, T., Naumovski, L., Lopez, C. D. & Brachmann, R. K. Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites. Oncogene 21, 7901–7911 (2002).

    CAS  PubMed  Google Scholar 

  101. Chen, X., Ko, L. J., Jayaraman, L. & Prives, C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10, 2438–2451 (1996).

    CAS  PubMed  Google Scholar 

  102. Schlereth, K. et al. DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 38, 356–368 (2010).

    CAS  PubMed  Google Scholar 

  103. Fischer, M., Steiner, L. & Engeland, K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 13, 3037–3058 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hafner, A. et al. p53 pulses lead to distinct patterns of gene expression albeit similar DNA-binding dynamics. Nat. Struct. Mol. Biol. 24, 840–847 (2017). This study presents the effects of p53 expression dynamics on the expression of its target genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rashi-Elkeles, S. et al. Parallel profiling of the transcriptome, cistrome, and epigenome in the cellular response to ionizing radiation. Sci. Signal. 7, rs3 (2014).

    PubMed  Google Scholar 

  106. Nikulenkov, F. et al. Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. Cell Death Differ. 19, 1992–2002 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hoffman, W. H., Biade, S., Zilfou, J. T., Chen, J. & Murphy, M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J. Biol. Chem. 277, 3247–3257 (2002).

    CAS  PubMed  Google Scholar 

  108. Johnson, R. A., Ince, T. A. & Scotto, K. W. Transcriptional repression by p53 through direct binding to a novel DNA element. J. Biol. Chem. 276, 27716–27720 (2001).

    CAS  PubMed  Google Scholar 

  109. Lipski, R. et al. p53 Dimers associate with a head-to-tail response element to repress cyclin B transcription. PLOS ONE 7, e42615 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Laptenko, O., Beckerman, R., Freulich, E. & Prives, C. p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation. Proc. Natl Acad. Sci. USA 108, 10385–10390 (2011).

    CAS  PubMed  Google Scholar 

  111. Lidor Nili, E. et al. p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy. Genome Res. 20, 1361–1368 (2010).

    PubMed  PubMed Central  Google Scholar 

  112. Sammons, M. A., Zhu, J., Drake, A. M. & Berger, S. L. TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity. Genome Res. 25, 179–188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Paris, R., Henry, R. E., Stephens, S. J., McBryde, M. & Espinosa, J. M. Multiple p53-independent gene silencing mechanisms define the cellular response to p53 activation. Cell Cycle 7, 2427–2433 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Min, S., Kim, K., Kim, S. G., Cho, H. & Lee, Y. Chromatin-remodeling factor, RSF1, controls p53-mediated transcription in apoptosis upon DNA strand breaks. Cell Death Dis. 9, 1079 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol. Cell 49, 825–837 (2013).

    CAS  PubMed  Google Scholar 

  116. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  Google Scholar 

  117. Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer 4, 793–805 (2004).

    CAS  PubMed  Google Scholar 

  118. Brooks, C. L. & Gu, W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr. Opin. Cell Biol. 15, 164–171 (2003).

    CAS  PubMed  Google Scholar 

  119. DeHart, C. J., Chahal, J. S., Flint, S. J. & Perlman, D. H. Extensive post-translational modification of active and inactivated forms of endogenous p53. Mol. Cell. Proteomics 13, 1–17 (2014).

    CAS  PubMed  Google Scholar 

  120. Appella, E. & Anderson, C. W. Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. 268, 2764–2772 (2001).

    CAS  PubMed  Google Scholar 

  121. Kapoor, M. & Lozano, G. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc. Natl Acad. Sci. USA 95, 2834–2837 (1998).

    CAS  PubMed  Google Scholar 

  122. Lavin, M. F. & Gueven, N. The complexity of p53 stabilization and activation. Cell Death Differ. 13, 941–950 (2006).

    CAS  PubMed  Google Scholar 

  123. Lu, H., Taya, Y., Ikeda, M. & Levine, A. J. Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc. Natl Acad. Sci. USA 95, 6399–6402 (1998).

    CAS  PubMed  Google Scholar 

  124. Maki, C. G. & Howley, P. M. Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation. Mol. Cell. Biol. 17, 355–363 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Saito, S. et al. Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J. Biol. Chem. 278, 37536–37544 (2003).

    CAS  PubMed  Google Scholar 

  126. Sakaguchi, K. et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12, 2831–2841 (1998). This study shows the identification of p53 acetylation sites, the responsible enzymes and the crosstalk with p53 phosphorylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Feng, L., Lin, T., Uranishi, H., Gu, W. & Xu, Y. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol. Cell. Biol. 25, 5389–5395 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Luo, J., Su, F., Chen, D., Shiloh, A. & Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377–381 (2000).

    CAS  PubMed  Google Scholar 

  129. Friedler, A., Veprintsev, D. B., Freund, S. M., von Glos, K. I. & Fersht, A. R. Modulation of binding of DNA to the C-terminal domain of p53 by acetylation. Structure 13, 629–636 (2005).

    CAS  PubMed  Google Scholar 

  130. Nakamura, S., Roth, J. A. & Mukhopadhyay, T. Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Mol. Cell. Biol. 20, 9391–9398 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Krummel, K. A., Lee, C. J., Toledo, F. & Wahl, G. M. The C-terminal lysines fine-tune P53 stress responses in a mouse model but are not required for stability control or transactivation. Proc. Natl Acad. Sci. USA 102, 10188–10193 (2005).

    CAS  PubMed  Google Scholar 

  132. Tang, Y., Zhao, W., Chen, Y., Zhao, Y. & Gu, W. Acetylation is indispensable for p53 activation. Cell 133, 612–626 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Oliner, J. D. et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362, 857–860 (1993).

    CAS  PubMed  Google Scholar 

  134. Chen, J., Marechal, V. & Levine, A. J. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13, 4107–4114 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Laptenko, O. et al. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol. Cell 57, 1034–1046 (2015). This study shows the role of the p53 CTD in site-specific binding.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sykes, S. M. et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol. Cell 24, 841–851 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tang, Y., Luo, J., Zhang, W. & Gu, W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 24, 827–839 (2006).

    CAS  PubMed  Google Scholar 

  138. Dai, C. et al. Differential effects on p53-mediated cell cycle arrest versus apoptosis by p90. Proc. Natl Acad. Sci. USA 108, 18937–18942 (2011).

    CAS  PubMed  Google Scholar 

  139. Knights, C. D. et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J. Cell Biol. 173, 533–544 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Chao, C. et al. Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol. Cell. Biol. 26, 6859–6869 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Arbely, E. et al. Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. Proc. Natl Acad. Sci. USA 108, 8251–8256 (2011).

    CAS  PubMed  Google Scholar 

  142. Vainer, R., Cohen, S., Shahar, A., Zarivach, R. & Arbely, E. Structural basis for p53 Lys120-acetylation-dependent DNA-binding mode. J. Mol. Biol. 428, 3013–3025 (2016).

    CAS  PubMed  Google Scholar 

  143. D’Orazi, G. et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat. Cell Biol. 4, 11–19 (2002).

    PubMed  Google Scholar 

  144. Hofmann, T. G. et al. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat. Cell Biol. 4, 1–10 (2002).

    CAS  PubMed  Google Scholar 

  145. Rinaldo, C. et al. MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol. Cell 25, 739–750 (2007).

    CAS  PubMed  Google Scholar 

  146. Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).

    CAS  PubMed  Google Scholar 

  147. Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677 (1998).

    CAS  PubMed  Google Scholar 

  148. Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679 (1998).

    CAS  PubMed  Google Scholar 

  149. Siliciano, J. D. et al. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11, 3471–3481 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Tibbetts, R. S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152–157 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Chao, C., Saito, S., Anderson, C. W., Appella, E. & Xu, Y. Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc. Natl Acad. Sci. USA 97, 11936–11941 (2000).

    CAS  PubMed  Google Scholar 

  152. Sluss, H. K., Armata, H., Gallant, J. & Jones, S. N. Phosphorylation of serine 18 regulates distinct p53 functions in mice. Mol. Cell. Biol. 24, 976–984 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Saito, S. et al. ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J. Biol. Chem. 277, 12491–12494 (2002).

    CAS  PubMed  Google Scholar 

  154. Shi, X. et al. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol. Cell 27, 636–646 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang, J. et al. G9a and Glp methylate lysine 373 in the tumor suppressor p53. J. Biol. Chem. 285, 9636–9641 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Huang, J. et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 444, 629–632 (2006).

    CAS  Google Scholar 

  157. Chuikov, S. et al. Regulation of p53 activity through lysine methylation. Nature 432, 353–360 (2004).

    CAS  PubMed  Google Scholar 

  158. Campaner, S. et al. The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol. Cell 43, 681–688 (2011).

    CAS  PubMed  Google Scholar 

  159. Lehnertz, B. et al. p53-dependent transcription and tumor suppression are not affected in Set7/9-deficient mice. Mol. Cell 43, 673–680 (2011).

    CAS  PubMed  Google Scholar 

  160. Huang, J. et al. p53 is regulated by the lysine demethylase LSD1. Nature 449, 105–108 (2007).

    CAS  PubMed  Google Scholar 

  161. Kachirskaia, I. et al. Role for 53BP1 Tudor domain recognition of p53 dimethylated at lysine 382 in DNA damage signaling. J. Biol. Chem. 283, 34660–34666 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. West, L. E. et al. The MBT repeats of L3MBTL1 link SET8-mediated p53 methylation at lysine 382 to target gene repression. J. Biol. Chem. 285, 37725–37732 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Jansson, M. et al. Arginine methylation regulates the p53 response. Nat. Cell Biol. 10, 1431–1439 (2008).

    CAS  PubMed  Google Scholar 

  164. Lambert, P. F., Kashanchi, F., Radonovich, M. F., Shiekhattar, R. & Brady, J. N. Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem. 273, 33048–33053 (1998).

    CAS  PubMed  Google Scholar 

  165. Dornan, D. & Hupp, T. R. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300. EMBO Rep. 2, 139–144 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ito, A. et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20, 1331–1340 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Rodriguez, M. S., Desterro, J. M., Lain, S., Lane, D. P. & Hay, R. T. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell. Biol. 20, 8458–8467 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Li, M., Luo, J., Brooks, C. L. & Gu, W. Acetylation of p53 inhibits its ubiquitination by Mdm2. J. Biol. Chem. 277, 50607–50611 (2002).

    CAS  PubMed  Google Scholar 

  169. Dumaz, N. & Meek, D. W. Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J. 18, 7002–7010 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Sakaguchi, K. et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J. Biol. Chem. 275, 9278–9283 (2000).

    CAS  PubMed  Google Scholar 

  171. Barlev, N. A. et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8, 1243–1254 (2001).

    CAS  PubMed  Google Scholar 

  172. Kaeser, M. D. & Iggo, R. D. Promoter-specific p53-dependent histone acetylation following DNA damage. Oncogene 23, 4007–4013 (2004).

    CAS  PubMed  Google Scholar 

  173. Lin, T. et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7, 165–171 (2005).

    CAS  PubMed  Google Scholar 

  174. Tang, Z. et al. SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53. Cell 154, 297–310 (2013). This study shows p53-mediated regulation of transcription activation by p300 and SET1.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Akdemir, K. C. et al. Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells. Nucleic Acids Res. 42, 205–223 (2014).

    CAS  PubMed  Google Scholar 

  176. Chen, D., Padiernos, E., Ding, F., Lossos, I. S. & Lopez, C. D. Apoptosis-stimulating protein of p53-2 (ASPP2/53BP2L) is an E2F target gene. Cell Death Differ. 12, 358–368 (2005).

    CAS  PubMed  Google Scholar 

  177. Fogal, V. et al. ASPP1 and ASPP2 are new transcriptional targets of E2F. Cell Death Differ. 12, 369–376 (2005).

    CAS  PubMed  Google Scholar 

  178. Bergamaschi, D. et al. ASPP1 and ASPP2: common activators of p53 family members. Mol. Cell. Biol. 24, 1341–1350 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Patel, S. et al. Molecular interactions of ASPP1 and ASPP2 with the p53 protein family and the apoptotic promoters PUMA and Bax. Nucleic Acids Res. 36, 5139–5151 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Robinson, R. A., Lu, X., Jones, E. Y. & Siebold, C. Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73. Structure 16, 259–268 (2008).

    CAS  PubMed  Google Scholar 

  181. Samuels-Lev, Y. et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell 8, 781–794 (2001).

    CAS  PubMed  Google Scholar 

  182. Desantis, A. et al. Che-1 modulates the decision between cell cycle arrest and apoptosis by its binding to p53. Cell Death Dis. 6, e1764 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Hopker, K. et al. AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis. EMBO J. 31, 3961–3975 (2012).

    PubMed  PubMed Central  Google Scholar 

  184. Li, B., Adams, C. C. & Workman, J. L. Nucleosome binding by the constitutive transcription factor Sp1. J. Biol. Chem. 269, 7756–7763 (1994).

    CAS  PubMed  Google Scholar 

  185. Li, H. et al. Integrated high-throughput analysis identifies Sp1 as a crucial determinant of p53-mediated apoptosis. Cell Death Differ. 21, 1493–1502 (2014).

    PubMed  PubMed Central  Google Scholar 

  186. Das, S. et al. Hzf Determines cell survival upon genotoxic stress by modulating p53 transactivation. Cell 130, 624–637 (2007). This study shows the modulation of p53 activity by a transcription factor.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Cordenonsi, M. et al. Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 315, 840–843 (2007).

    CAS  PubMed  Google Scholar 

  188. Flores, E. R. et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7, 363–373 (2005).

    CAS  PubMed  Google Scholar 

  189. Flores, E. R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564 (2002).

    CAS  PubMed  Google Scholar 

  190. Urist, M. & Prives, C. p53 leans on its siblings. Cancer Cell 1, 311–313 (2002).

    CAS  PubMed  Google Scholar 

  191. Yang, A. et al. Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. Mol. Cell 24, 593–602 (2006).

    CAS  PubMed  Google Scholar 

  192. Yang, A. & McKeon, F. p63 and p73: p53 mimics, menaces and more. Nat. Rev. Mol. Cell Biol. 1, 199–207 (2000).

    CAS  PubMed  Google Scholar 

  193. Brandt, T., Petrovich, M., Joerger, A. C. & Veprintsev, D. B. Conservation of DNA-binding specificity and oligomerisation properties within the p53 family. BMC Genomics 10, 628 (2009).

    PubMed  PubMed Central  Google Scholar 

  194. McDade, S. S. et al. Genome-wide characterization reveals complex interplay between TP53 and TP63 in response to genotoxic stress. Nucleic Acids Res. 42, 6270–6285 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Chen, X. et al. DNA damage strength modulates a bimodal switch of p53 dynamics for cell-fate control. BMC Biol. 11, 73 (2013).

    PubMed  PubMed Central  Google Scholar 

  196. Paek, A. L., Liu, J. C., Loewer, A., Forrester, W. C. & Lahav, G. Cell-to-cell variation in p53 dynamics leads to fractional killing. Cell 165, 631–642 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Purvis, J. E. et al. p53 dynamics control cell fate. Science 336, 1440–1444 (2012). This study shows the regulation of cell fate by p53 expression dynamics.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Lahav, G. et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Genet. 36, 147–150 (2004).

    CAS  PubMed  Google Scholar 

  199. Reyes, J. et al. Fluctuations in p53 signaling allow escape from cell-cycle arrest. Mol. Cell 71, 581–591 (2018).

    CAS  PubMed  Google Scholar 

  200. Porter, J. R., Fisher, B. E. & Batchelor, E. p53 pulses diversify target gene expression dynamics in an mRNA half-life-dependent manner and delineate co-regulated target gene subnetworks. Cell Syst. 2, 272–282 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Melanson, B. D. et al. The role of mRNA decay in p53-induced gene expression. RNA 17, 2222–2234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Yu, J., Wang, Z., Kinzler, K. W., Vogelstein, B. & Zhang, L. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc. Natl Acad. Sci. USA 100, 1931–1936 (2003).

    CAS  PubMed  Google Scholar 

  203. Benson, E. K. et al. p53-dependent gene repression through p21 is mediated by recruitment of E2F4 repression complexes. Oncogene 33, 3959–3969 (2014).

    CAS  PubMed  Google Scholar 

  204. Fischer, M., Quaas, M., Steiner, L. & Engeland, K. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes. Nucleic Acids Res. 44, 164–174 (2016).

    CAS  PubMed  Google Scholar 

  205. Engeland, K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 25, 114–132 (2018).

    CAS  PubMed  Google Scholar 

  206. Farkas, T., Hansen, K., Holm, K., Lukas, J. & Bartek, J. Distinct phosphorylation events regulate p130- and p107-mediated repression of E2F-4. J. Biol. Chem. 277, 26741–26752 (2002).

    CAS  PubMed  Google Scholar 

  207. Mannefeld, M., Klassen, E. & Gaubatz, S. B-MYB is required for recovery from the DNA damage-induced G2 checkpoint in p53 mutant cells. Cancer Res. 69, 4073–4080 (2009).

    CAS  PubMed  Google Scholar 

  208. Quaas, M., Muller, G. A. & Engeland, K. p53 can repress transcription of cell cycle genes through a p21(WAF1/CIP1)-dependent switch from MMB to DREAM protein complex binding at CHR promoter elements. Cell Cycle 11, 4661–4672 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Sadasivam, S. & DeCaprio, J. A. The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat. Rev. Cancer 13, 585–595 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Chen, X. et al. The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism. Mol. Cell. Biol. 33, 227–236 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Carvajal, L. A., Hamard, P. J., Tonnessen, C. & Manfredi, J. J. E2F7, a novel target, is up-regulated by p53 and mediates DNA damage-dependent transcriptional repression. Genes Dev. 26, 1533–1545 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Westendorp, B. et al. E2F7 represses a network of oscillating cell cycle genes to control S-phase progression. Nucleic Acids Res. 40, 3511–3523 (2012).

    CAS  PubMed  Google Scholar 

  213. Aksoy, O. et al. The atypical E2F family member E2F7 couples the p53 and RB pathways during cellular senescence. Genes Dev. 26, 1546–1557 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Freeman, J. A. & Espinosa, J. M. The impact of post-transcriptional regulation in the p53 network. Brief Funct. Genomics 12, 46–57 (2013).

    CAS  PubMed  Google Scholar 

  215. Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. He, L., He, X., Lowe, S. W. & Hannon, G. J. microRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat. Rev. Cancer 7, 819–822 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Lahav laboratory for helpful comments on the manuscript. Research in the Lahav laboratory is supported by grants from the US National Institutes of Health (GM083303 and GM116864).

Reviewer information

Nature Reviews Molecular Cell Biology thanks M. Barton and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the discussion of content, wrote the manuscript and edited it before submission. A.H., A.J. and G.L. also researched data for the article.

Corresponding author

Correspondence to Galit Lahav.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafner, A., Bulyk, M.L., Jambhekar, A. et al. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 20, 199–210 (2019). https://doi.org/10.1038/s41580-019-0110-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0110-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing