Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autoantibodies in myositis

Key Points

  • Myositis-specific autoantibodies (MSAs) are present in the majority of juvenile and adult cases of idiopathic inflammatory myopathy and are largely mutually exclusive.

  • Anti-TIF1γ, anti-NXP2 and anti-MDA5 antibodies are present in just over half of juvenile dermatomyositis cases, where they identify distinct subsets of disease.

  • In adults, anti-TIF1γ antibodies are associated with myositis-associated cancer, anti-HMGCR antibodies with statin-induced myosotis and anti-cN1A antibodies with inclusion body myositis.

  • The presence of anti-MDA5 antibodies in either myositis or clinically amyopathic dermatomyositis is a risk factor for rapidly progressive interstitial lung disease, particularly in Eastern Asian populations.

  • Interstitial lung disease is a prominent manifestation of antisynthetase syndrome, which is defined by the presence of antibodies to certain amino-acyl transfer RNA synthetases.

  • The discovery of novel myositis autoantigens is providing insights into pathogenesis and the links between autoimmunity and cancer.

Abstract

The discovery of novel autoantigen systems related to idiopathic inflammatory myopathies (collectively referred to as myositis) in adults and children has had major implications for the diagnosis and management of this group of diseases across a wide range of medical specialties. Traditionally, autoantibodies found in patients with myositis are described as being myositis-specific autoantibodies (MSAs) or myositis-associated autoantibodies (MAAs), depending on their prevalence in other, related conditions. However, certain MSAs are more closely associated with extramuscular manifestations, such as skin and lung disease, than with myositis itself. It is very rare for more than one MSA to coexist in the same individual, underpinning the potential to use MSAs to precisely define genetic and disease endotypes. Each MSA is associated with a distinctive pattern of disease or phenotype, which has implications for diagnosis and a more personalized approach to therapy. Knowledge of the function and localization of the autoantigenic targets for MSAs has provided key insights into the potential immunopathogenic mechanisms of myositis. In particular, evidence suggests that the alteration of expression of a myositis-related autoantigen by certain environmental influences or oncogenesis could be a pivotal event linking autoantibody generation to the development of disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myositis-specific autoantibody discovery and expected frequency in disease.
Figure 2: Tumorigenesis and postulated generation of myositis-specific autoantibodies.

Similar content being viewed by others

References

  1. Larman, H. B. et al. Cytosolic 5′-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann. Neurol. 73, 408–418 (2013).

    Google Scholar 

  2. Pluk, H. et al. Autoantibodies to cytosolic 5′-nucleotidase 1A in inclusion body myositis. Ann. Neurol. 73, 397–407 (2013).

    CAS  Google Scholar 

  3. Trallero-Araguas, E. et al. Usefulness of anti-p155 autoantibody for diagnosing cancer-associated dermatomyositis: a systematic review and meta-analysis. Arthritis Rheum. 64, 523–532 (2012).

    CAS  PubMed  Google Scholar 

  4. Mammen, A. L. et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 63, 713–721 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Betteridge, Z. & McHugh, N. Myositis-specific autoantibodies: an important tool to support diagnosis of myositis. J. Intern. Med. 280, 8–23 (2016).

    CAS  PubMed  Google Scholar 

  6. Tansley, S. L. et al. Autoantibodies in juvenile-onset myositis: their diagnostic value and associated clinical phenotype in a large UK cohort. J. Autoimmun. 84, 55–64 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Love, L. A. et al. A new approach to the classification of idiopathic inflammatory myopathy: myositis-specific autoantibodies define useful homogeneous patient groups. Medicine 70, 360–374 (1991).

    CAS  PubMed  Google Scholar 

  8. Casciola-Rosen, L. et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J. Exp. Med. 201, 591–601 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohassel, P., Rosen, P., Casciola-Rosen, L., Pak, K. & Mammen, A. L. Expression of the dermatomyositis autoantigen transcription intermediary factor 1γ in regenerating muscle. Arthritis Rheumatol. 67, 266–272 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Amaral Silva, M., Cogollo, E. & Isenberg, D. A. Why do patients with myositis die? A retrospective analysis of a single-centre cohort. Clin. Exp. Rheumatol. 34, 820–826 (2016).

    PubMed  Google Scholar 

  11. Johnson, C. et al. Assessment of mortality in autoimmune myositis with and without associated interstitial lung disease. Lung 194, 733–737 (2016).

    CAS  PubMed  Google Scholar 

  12. Koga, T. et al. The diagnostic utility of anti-melanoma differentiation-associated gene 5 antibody testing for predicting the prognosis of Japanese patients with DM. Rheumatology 51, 1278–1284 (2012).

    CAS  PubMed  Google Scholar 

  13. Vancsa, A. et al. Characteristics of interstitial lung disease in SS-A positive/Jo-1 positive inflammatory myopathy patients. Rheumatol. Int. 29, 989–994 (2009).

    CAS  PubMed  Google Scholar 

  14. La Corte, R., Lo Mo Naco, A., Locaputo, A., Dolzani, F. & Trotta, F. In patients with antisynthetase syndrome the occurrence of anti-Ro/SSA antibodies causes a more severe interstitial lung disease. Autoimmunity 39, 249–253 (2006).

    CAS  PubMed  Google Scholar 

  15. Marie, I. et al. Short-term and long-term outcomes of interstitial lung disease in polymyositis and dermatomyositis: a series of 107 patients. Arthritis Rheum. 63, 3439–3447 (2011).

    CAS  PubMed  Google Scholar 

  16. Witt, L. J., Curran, J. J. & Strek, M. E. The diagnosis and treatment of antisynthetase syndrome. Clin. Pulm. Med. 23, 218–226 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Nishikai, M. & Reichlin, M. Heterogeneity of precipitating antibodies in polymyositis and dermatomyositis. Characterization of the Jo-1 antibody system. Arthritis Rheum. 23, 881–888 (1980).

    CAS  PubMed  Google Scholar 

  18. Mescam-Mancini, L. et al. Anti-Jo-1 antibody-positive patients show a characteristic necrotizing perifascicular myositis. Brain 138, 2485–2492 (2015).

    PubMed  Google Scholar 

  19. Hamaguchi, Y. et al. Common and distinct clinical features in adult patients with anti-aminoacyl-tRNA synthetase antibodies: heterogeneity within the syndrome. PLOS ONE 8, e60442 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Klein, M. et al. Arthritis in idiopathic inflammatory myopathy: clinical features and autoantibody associations. J. Rheumatol. 41, 1133–1139 (2014).

    PubMed  Google Scholar 

  21. Shi, J. et al. Clinical profiles and prognosis of patients with distinct antisynthetase autoantibodies. J. Rheumatol. 44, 1051–1057 (2017).

    CAS  PubMed  Google Scholar 

  22. Rider, L. G. et al. The myositis autoantibody phenotypes of the juvenile idiopathic inflammatory myopathies. Medicine 92, 223–243 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Huber, A. M. et al. Early illness features associated with mortality in the juvenile idiopathic inflammatory myopathies. Arthritis Care Res. 66, 732–740 (2014).

    Google Scholar 

  24. Basharat, P. & Christopher-Stine, L. Immune-mediated necrotizing myopathy: update on diagnosis and management. Curr. Rheumatol. Rep. 17, 72 (2015).

    PubMed  Google Scholar 

  25. Pinal-Fernandez, I. et al. Longitudinal course of disease in a large cohort of myositis patients with autoantibodies recognizing the signal recognition particle. Arthritis Care Res. 69, 263–270 (2017).

    CAS  Google Scholar 

  26. Kao, A. H., Lacomis, D., Lucas, M., Fertig, N. & Oddis, C. V. Anti-signal recognition particle autoantibody in patients with and patients without idiopathic inflammatory myopathy. Arthritis Rheum. 50, 209–215 (2004).

    CAS  PubMed  Google Scholar 

  27. Hengstman, G. J. et al. Anti-signal recognition particle autoantibodies: marker of a necrotising myopathy. Ann. Rheum. Dis. 65, 1635–1638 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Suzuki, S. et al. Myopathy associated with antibodies to signal recognition particle: disease progression and neurological outcome. Arch. Neurol. 69, 728–732 (2012).

    PubMed  Google Scholar 

  29. Binns, E. L. et al. Effective induction therapy for anti-SRP associated myositis in childhood: a small case series and review of the literature. Pediatr. Rheumatol. 15, 77 (2017).

    CAS  Google Scholar 

  30. Allenbach, Y. et al. Anti-HMGCR autoantibodies in European patients with autoimmune necrotizing myopathies: inconstant exposure to statin. Medicine 93, 150–157 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mammen, A. L. Necrotizing myopathies: beyond statins. Curr. Opin. Rheumatol. 26, 679–683 (2014).

    CAS  PubMed  Google Scholar 

  32. Tansley, S. L. et al. Anti-HMGCR autoantibodies in juvenile idiopathic inflammatory myopathies identify a rare but clinically important subset of patients. J. Rheumatol. 44, 488–492 (2017).

    PubMed  Google Scholar 

  33. Kishi, T. et al. Association of anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase autoantibodies with DRB1*07:01 and severe myositis in juvenile myositis patients. Arthritis Care Res. 69, 1088–1094 (2017).

    CAS  Google Scholar 

  34. Tiniakou, E. et al. More severe disease and slower recovery in younger patients with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Rheumatology 56, 787–794 (2017).

    CAS  PubMed  Google Scholar 

  35. Sigurgeirsson, B., Lindelof, B., Edhag, O. & Allander, E. Risk of cancer in patients with dermatomyositis or polymyositis. A population-based study. N. Engl. J. Med. 326, 363–367 (1992).

    CAS  PubMed  Google Scholar 

  36. Hoshino, K. et al. Anti-MDA5 and anti-TIF1-γ antibodies have clinical significance for patients with dermatomyositis. Rheumatology 49, 1726–1733 (2010).

    CAS  PubMed  Google Scholar 

  37. Fujimoto, M. et al. Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis Rheum. 64, 513–522 (2012).

    CAS  PubMed  Google Scholar 

  38. Ichimura, Y. et al. Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies: possible association with malignancy. Ann. Rheum. Dis. 71, 710–713 (2012).

    CAS  PubMed  Google Scholar 

  39. Fiorentino, D. F. et al. Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1γ. Arthritis Rheum. 65, 2954–2962 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Albayda, J. et al. Dermatomyositis patients with anti-nuclear matrix protein-2 autoantibodies have more edema, more severe muscle disease, and increased malignancy risk. Arthritis Care Res., 69, 1771–1776 (2017).

    CAS  Google Scholar 

  41. Rogers, A., Chung, L., Li, S., Casciola-Rosen, L. & Fiorentino, D. F. Cutaneous and systemic findings associated with nuclear matrix protein 2 antibodies in adult dermatomyositis patients. Arthritis Care Res. 69, 1909–1914 (2017).

    CAS  Google Scholar 

  42. Kijanka, G. et al. Human IgG antibody profiles differentiate between symptomatic patients with and without colorectal cancer. Gut 59, 69–78 (2010).

    CAS  PubMed  Google Scholar 

  43. Shah, A. A. et al. Evaluation of cancer-associated myositis and scleroderma autoantibodies in breast cancer patients without rheumatic disease. Clin. Exp. Rheumatol. 35 (Suppl. 106), 71–74 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Dutton, K. & Soden, M. Malignancy screening in autoimmune myositis amongst Australian rheumato-logists. Intern. Med. J. 47, 1367–1375 (2017).

    PubMed  Google Scholar 

  45. Hengstman, G. J. et al. Clinical characteristics of patients with myositis and autoantibodies to different fragments of the Mi-2β antigen. Ann. Rheum. Dis. 65, 242–245 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ceribelli, A. et al. Myositis-specific autoantibodies and their association with malignancy in Italian patients with polymyositis and dermatomyositis. Clin. Rheumatol. 36, 469–475 (2017).

    PubMed  Google Scholar 

  47. Allenbach, Y. et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody. Brain 139, 2131–2135 (2016).

    PubMed  Google Scholar 

  48. Yang, H. et al. Identification of multiple cancer-associated myositis-specific autoantibodies in idiopathic inflammatory myopathies: a large longitudinal cohort study. Arthritis Res. Ther. 19, 259 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Watanabe, K. et al. Detection of antisynthetase syndrome in patients with idiopathic interstitial pneumonias. Respir. Med. 105, 1238–1247 (2011).

    PubMed  Google Scholar 

  50. Aggarwal, R. et al. Myositis-associated usual interstitial pneumonia has a better survival than idiopathic pulmonary fibrosis. Rheumatology 56, 384–389 (2017).

    PubMed  Google Scholar 

  51. Aggarwal, R. et al. Patients with non-Jo-1 anti-tRNA-synthetase autoantibodies have worse survival than Jo-1 positive patients. Ann. Rheum. Dis. 73, 227–232 (2014).

    PubMed  Google Scholar 

  52. Hervier, B. et al. Hierarchical cluster and survival analyses of antisynthetase syndrome: phenotype and outcome are correlated with anti-tRNA synthetase antibody specificity. Autoimmun. Rev. 12, 210–217 (2012).

    CAS  PubMed  Google Scholar 

  53. Lega, J. C. et al. The clinical phenotype associated with myositis-specific and associated autoantibodies: a meta-analysis revisiting the so-called antisynthetase syndrome. Autoimmun. Rev. 13, 883–891 (2014).

    CAS  PubMed  Google Scholar 

  54. Mahler, M. & Raijmakers, R. Novel aspects of autoantibodies to the PM/Scl complex: clinical, genetic and diagnostic insights. Autoimmun. Rev. 6, 432–437 (2007).

    CAS  PubMed  Google Scholar 

  55. Sato, S. et al. RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: association with rapidly progressive interstitial lung disease. Arthritis Rheum. 60, 2193–2200 (2009).

    CAS  PubMed  Google Scholar 

  56. Gono, T. et al. Anti-MDA5 antibody, ferritin and IL-18 are useful for the evaluation of response to treatment in interstitial lung disease with anti-MDA5 antibody-positive dermatomyositis. Rheumatology 51, 1563–1570 (2012).

    CAS  PubMed  Google Scholar 

  57. Kobayashi, I. et al. Anti-melanoma differentiation-associated gene 5 antibody is a diagnostic and predictive marker for interstitial lung diseases associated with juvenile dermatomyositis. J. Pediatr. 158, 675–677 (2011).

    CAS  PubMed  Google Scholar 

  58. Kobayashi, N. et al. Clinical and laboratory features of fatal rapidly progressive interstitial lung disease associated with juvenile dermatomyositis. Rheumatology 54, 784–791 (2015).

    CAS  PubMed  Google Scholar 

  59. Fiorentino, D., Chung, L., Zwerner, J., Rosen, A. & Casciola-Rosen, L. The mucocutaneous and systemic phenotype of dermatomyositis patients with antibodies to MDA5 (CADM-140): a retrospective study. J. Am. Acad. Dermatol. 65, 25–34 (2011).

    PubMed  PubMed Central  Google Scholar 

  60. Hall, J. C. et al. Anti-melanoma differentiation-associated protein 5-associated dermatomyositis: expanding the clinical spectrum. Arthritis Care Res. 65, 1307–1315 (2013).

    CAS  Google Scholar 

  61. Moghadam-Kia, S., Oddis, C. V., Sato, S., Kuwana, M. & Aggarwal, R. Anti-melanoma differentiation-associated gene 5 is associated with rapidly progressive lung disease and poor survival in US patients with amyopathic and myopathic dermatomyositis. Arthritis Care Res. 68, 689–694 (2016).

    CAS  Google Scholar 

  62. Tansley, S. L. et al. Anti-MDA5 autoantibodies in juvenile dermatomyositis identify a distinct clinical phenotype: a prospective cohort study. Arthritis Res. Ther. 16, R138 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Narang, N. S., Casciola-Rosen, L., Li, S., Chung, L. & Fiorentino, D. F. Cutaneous ulceration in dermatomyositis: association with anti-melanoma differentiation-associated gene 5 antibodies and interstitial lung disease. Arthritis Care Res. 67, 667–672 (2015).

    CAS  Google Scholar 

  64. Fiorentino, D. F. et al. Distinctive cutaneous and systemic features associated with antitranscriptional intermediary factor-1γ antibodies in adults with dermatomyositis. J. Am. Acad. Dermatol. 72, 449–455 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. Bailey, E. E. & Fiorentino, D. F. Amyopathic dermatomyositis: definitions, diagnosis, and management. Curr. Rheumatol. Rep. 16, 465 (2014).

    PubMed  Google Scholar 

  66. Betteridge, Z. E. et al. Clinical and human leucocyte antigen class II haplotype associations of autoantibodies to small ubiquitin-like modifier enzyme, a dermatomyositis-specific autoantigen target, in UK Caucasian adult-onset myositis. Ann. Rheum. Dis. 68, 1621–1625 (2009).

    CAS  PubMed  Google Scholar 

  67. Sato, S. et al. Autoantibodies to a 140-kd polypeptide, CADM-140, in Japanese patients with clinically amyopathic dermatomyositis. Arthritis Rheum. 52, 1571–1576 (2005).

    CAS  PubMed  Google Scholar 

  68. Habers, G. E. et al. Association of myositis autoantibodies, clinical features, and environmental exposures at illness onset with disease course in juvenile myositis. Arthritis Rheumatol. 68, 761–768 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tansley, S. L. et al. Calcinosis in juvenile dermatomyositis is influenced by both anti-NXP2 autoantibody status and age at disease onset. Rheumatology 53, 2204–2208 (2014).

    PubMed  Google Scholar 

  70. Fredi, M. et al. Calcinosis in poly-dermatomyositis: clinical and laboratory predictors and treatment options. Clin. Exp. Rheumatol. 35, 303–308 (2017).

    PubMed  Google Scholar 

  71. Ceribelli, A. et al. Anti-MJ/NXP-2 autoantibody specificity in a cohort of adult Italian patients with polymyositis/dermatomyositis. Arthritis Res. Ther. 14, R97 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Valenzuela, A., Chung, L., Casciola-Rosen, L. & Fiorentino, D. Identification of clinical features and autoantibodies associated with calcinosis in dermatomyositis. JAMA Dermatol. 150, 724–729 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Benveniste, O. et al. Long-term observational study of sporadic inclusion body myositis. Brain 134, 3176–3184 (2011).

    PubMed  Google Scholar 

  74. Lilleker, J. B. et al. Cytosolic 5′-nucleotidase 1A autoantibody profile and clinical characteristics in inclusion body myositis. Ann. Rheum. Dis. 76, 862–868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Herbert, M. K. et al. Disease specificity of autoantibodies to cytosolic 5′-nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Ann. Rheum. Dis. 75, 696–701 (2016).

    CAS  PubMed  Google Scholar 

  76. Aggarwal, R. et al. A negative antinuclear antibody does not indicate autoantibody negativity in myositis: role of anticytoplasmic antibody as a screening test for antisynthetase syndrome. J. Rheumatol. 44, 223–229 (2016).

    Google Scholar 

  77. Bundell, C., Rojana-Udomsart, A., Mastaglia, F., Hollingsworth, P. & McLean-Tooke, A. Diagnostic performance of a commercial immunoblot assay for myositis antibody testing. Pathology 48, 363–366 (2016).

    CAS  PubMed  Google Scholar 

  78. Cavazzana, I. et al. Testing for myositis specific autoantibodies: comparison between line blot and immunoprecipitation assays in 57 myositis sera. J. Immunol. Methods 433, 1–5 (2016).

    CAS  PubMed  Google Scholar 

  79. O'Hanlon, T. P. et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A, -B, -Cw, -DRB1, and -DQA1 allelic profiles distinguish European American patients with different myositis autoantibodies. Medicine 85, 111–127 (2006).

    CAS  PubMed  Google Scholar 

  80. Chinoy, H. et al. HLA-DPB1 associations differ between DRB1*03 positive anti-Jo-1 and anti-PM-Scl antibody positive idiopathic inflammatory myopathy. Rheumatology 48, 1213–1217 (2009).

    CAS  PubMed  Google Scholar 

  81. Miller, F. W. et al. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun. 16, 470–480 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rothwell, S. et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann. Rheum. Dis. 75, 1558–1566 (2016).

    CAS  PubMed  Google Scholar 

  83. Gono, T. et al. Association of HLA-DRB1*0101/*0405 with susceptibility to anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis in the Japanese population. Arthritis Rheum. 64, 3736–3740 (2012).

    CAS  PubMed  Google Scholar 

  84. Targoff, I. N. et al. A novel autoantibody to a 155-kd protein is associated with dermatomyositis. Arthritis Rheum. 54, 3682–3689 (2006).

    CAS  PubMed  Google Scholar 

  85. Mammen, A. L. et al. Increased frequency of DRB1*11:01 in anti-hydroxymethylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Care Res. 64, 1233–1237 (2012).

    CAS  Google Scholar 

  86. O'Hanlon, T. P. et al. HLA polymorphisms in African Americans with idiopathic inflammatory myopathy: allelic profiles distinguish patients with different clinical phenotypes and myositis autoantibodies. Arthritis Rheum. 54, 3670–3681 (2006).

    CAS  PubMed  Google Scholar 

  87. Burd, C. J., Kinyamu, H. K., Miller, F. W. & Archer, T. K. UV radiation regulates Mi-2 through protein translation and stability. J. Biol. Chem. 283, 34976–34982 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Love, L. A. et al. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. Arthritis Rheum. 60, 2499–2504 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. Okada, S. et al. Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease. Arthritis Rheum. 48, 2285–2293 (2003).

    PubMed  Google Scholar 

  90. Sarkar, K. et al. Seasonal influence on the onset of idiopathic inflammatory myopathies in serologically defined groups. Arthritis Rheum. 52, 2433–2438 (2005).

    PubMed  Google Scholar 

  91. Morikawa, S. et al. Analysis of the global RNA expression profiles of skeletal muscle cells treated with statins. J. Atheroscler. Thromb. 12, 121–131 (2005).

    CAS  PubMed  Google Scholar 

  92. Watanabe, Y. et al. Statins and myotoxic effects associated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase autoantibodies: an observational study in Japan. Medicine 94, e416 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chinoy, H. et al. Interaction of HLA-DRB1*03 and smoking for the development of anti-Jo-1 antibodies in adult idiopathic inflammatory myopathies: a European-wide case study. Ann. Rheum. Dis. 71, 961–965 (2012).

    CAS  PubMed  Google Scholar 

  94. Mammen, A. L. et al. Expression of the dermatomyositis autoantigen Mi-2 in regenerating muscle. Arthritis Rheum. 60, 3784–3793 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Joseph, C. G. et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343, 152–157 (2014).

    CAS  PubMed  Google Scholar 

  96. Pinal-Fernandez, I. et al. Tumour TIF1 mutations and loss of heterozygosity related to cancer-associated myositis. Rheumatology 57, 388–396 (2018).

    CAS  PubMed  Google Scholar 

  97. Aussy, A., Boyer, O. & Cordel, N. Dermatomyositis and immune-mediated necrotizing myopathies: a window on autoimmunity and cancer. Front. Immunol. 8, 992 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Pinal-Fernandez, I. et al. A longitudinal cohort study of the anti-synthetase syndrome: increased severity of interstitial lung disease in black patients and patients with anti-PL7 and anti-PL12 autoantibodies. Rheumatology 56, 999–1007 (2017).

    CAS  PubMed  Google Scholar 

  99. Aggarwal, R. et al. Autoantibody levels in myositis patients correlate with clinical response during B cell depletion with rituximab. Rheumatology 55, 991–999 (2016).

    CAS  PubMed  Google Scholar 

  100. Vermaak, E., Tansley, S. L. & McHugh, N. J. The evidence for immunotherapy in dermatomyositis and polymyositis: a systematic review. Clin. Rheumatol. 34, 2089–2095 (2015).

    PubMed  Google Scholar 

  101. Rider, L. G. & Miller, F. W. Laboratory evaluation of the inflammatory myopathies. Clin. Diagn. Lab. Immunol. 2, 1–9 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Stone, K. B. et al. Anti-Jo-1 antibody levels correlate with disease activity in idiopathic inflammatory myopathy. Arthritis Rheum. 56, 3125–3131 (2007).

    CAS  PubMed  Google Scholar 

  103. Muro, Y., Sugiura, K., Hoshino, K. & Akiyama, M. Disappearance of anti-MDA-5 autoantibodies in clinically amyopathic DM/interstitial lung disease during disease remission. Rheumatology 51, 800–804 (2012).

    CAS  PubMed  Google Scholar 

  104. Mahler, M., Miller, F. W. & Fritzler, M. J. Idiopathic inflammatory myopathies and the anti-synthetase syndrome: a comprehensive review. Autoimmun. Rev. 13, 367–371 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Reichlin, M. & Mattioli, M. Description of a serological reaction characteristic of polymyositis. Clin. Immunol. Immunopathol. 5, 12–20 (1976).

    CAS  PubMed  Google Scholar 

  106. Mathews, M. B., Reichlin, M., Hughes, G. R. & Bernstein, R. M. Anti-threonyl-tRNA synthetase, a second myositis-related autoantibody. J. Exp. Med. 160, 420–434 (1984).

    CAS  PubMed  Google Scholar 

  107. Reeves, W. H., Nigam, S. K. & Blobel, G. Human autoantibodies reactive with the signal-recognition particle. Proc. Natl Acad. Sci. USA 83, 9507–9511 (1986).

    CAS  PubMed  Google Scholar 

  108. Bunn, C. C., Bernstein, R. M. & Mathews, M. B. Autoantibodies against alanyl-tRNA synthetase and tRNAAla coexist and are associated with myositis. J. Exp. Med. 163, 1281–1291 (1986).

    CAS  PubMed  Google Scholar 

  109. Targoff, I. N., Trieu, E. P., Plotz, P. H. & Miller, F. W. Antibodies to glycyl-transfer RNA synthetase in patients with myositis and interstitial lung disease. Arthritis Rheum. 35, 821–830 (1992).

    CAS  PubMed  Google Scholar 

  110. Targoff, I. N., Trieu, E. P. & Miller, F. W. Reaction of anti-OJ autoantibodies with components of the multi-enzyme complex of aminoacyl-tRNA synthetases in addition to isoleucyl-tRNA synthetase. J. Clin. Invest. 91, 2556–2564 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hirakata, M. et al. Anti-KS: identification of autoantibodies to asparaginyl-transfer RNA synthetase associated with interstitial lung disease. J. immunol. 162, 2315–2320 (1999).

    CAS  PubMed  Google Scholar 

  112. Hashish, L., Trieu, E. P., Sadanandan, P. & Targoff, I. N. Identification of autoantibodies to tyrosyl-tRNA synthetase in dermatomyositis with features consistent with antisynthetase syndrome. Arthritis Rheumatol. 52, S312 (2005).

    Google Scholar 

  113. Betteridge, Z., Gunawardena, H., North, J., Slinn, J. & McHugh, N. Anti-synthetase syndrome: a new autoantibody to phenylalanyl transfer RNA synthetase (anti-Zo) associated with polymyositis and interstitial pneumonia. Rheumatology 46, 1005–1008 (2007).

    CAS  PubMed  Google Scholar 

  114. Betteridge, Z., Gunawardena, H., North, J., Slinn, J. & McHugh, N. Identification of a novel autoantibody directed against small ubiquitin-like modifier activating enzyme in dermatomyositis. Arthritis Rheum. 56, 3132–3137 (2007).

    CAS  PubMed  Google Scholar 

  115. Targoff, I. N., Trieu, E. P., Levy-Neto, M. & Oddis, C. V. Sera with autoantibodies to MJ antigen react with NXP2. Arthritis Rheumatol. 56, S787 (2007).

    Google Scholar 

  116. Oddis, C. et al. Clinical and serological characterisation of the anti–MJ antibody in childhood myositis [abstract]. Arthritis Rheum. 40 (Suppl.), 139 (1997).

    Google Scholar 

  117. Chinoy, H. et al. In adult onset myositis, the presence of interstitial lung disease and myositis specific/associated antibodies are governed by HLA class II haplotype, rather than by myositis subtype. Arthritis Res. Ther. 8, R13 (2006).

    PubMed  Google Scholar 

  118. Mierau, R. et al. Strong association of dermatomyositis-specific Mi-2 autoantibodies with a tryptophan at position 9 of the HLA-DR beta chain. Arthritis Rheum. 39, 868–876 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made a substantial contribution to discussions of content, wrote the article and contributed to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Neil J. McHugh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McHugh, N., Tansley, S. Autoantibodies in myositis. Nat Rev Rheumatol 14, 290–302 (2018). https://doi.org/10.1038/nrrheum.2018.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2018.56

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research