Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis

Key Points

  • Hypoxia, arising as a consequence of the increased cellular demand for oxygen during the inflammatory response, is a powerful trigger for the activation, proliferation and survival of endothelial cells and fibroblast-like synoviocytes

  • Impaired mitochondrial function and oxidative damage caused by hypoxia further exacerbate the inflammatory response through metabolic perturbation

  • Hypoxia induces immune cell dysfunction, resulting in an altered metabolic profile

  • The hypoxic environment induces activation of a complex crosstalk of signalling pathways, providing a feedback loop leading to further activation and inflammation

  • Targeting synovial metabolic pathways through inhibition of hypoxia-induced signalling pathways might have therapeutic benefit for rheumatoid arthritis and other inflammatory diseases

Abstract

Synovial proliferation, neovascularization and leukocyte extravasation transform the normally acellular synovium into an invasive tumour-like 'pannus'. The highly dysregulated architecture of the microvasculature creates a poor oxygen supply to the synovium, which, along with the increased metabolic turnover of the expanding synovial pannus, creates a hypoxic microenvironment. Abnormal cellular metabolism and mitochondrial dysfunction thus ensue and, in turn, through the increased production of reactive oxygen species, actively induce inflammation. When exposed to hypoxia in the inflamed joint, immune-inflammatory cells show adaptive survival reactions by activating key proinflammatory signalling pathways, including those mediated by hypoxia-inducible factor-1α (HIF-1α), nuclear factor κB (NF-κB), Janus kinase–signal transducer and activator of transcription (JAK–STAT) and Notch, which contribute to synovial invasiveness. The reprogramming of hypoxia-mediated pathways in synovial cells, such as fibroblasts, dendritic cells, macrophages and T cells, is implicated in the pathogenesis of rheumatoid arthritis and other inflammatory conditions, and might therefore provide an opportunity for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blood vessel activation in the rheumatoid joint.
Figure 2: Hypoxia and mitochondrial dysfunction.
Figure 3: Acute and chronic hypoxia regulates dendritic cell function.
Figure 4: Hypoxia-induced signalling in the rheumatoid joint.
Figure 5: Interplay between HIF-1α, Notch and STAT3 signalling.

Similar content being viewed by others

References

  1. Semenza, G. L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7, 345–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Prabhakar, N. R. Sensing hypoxia: physiology, genetics and epigenetics. J. Physiol. 591, 2245–2257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ng, C. T. et al. Synovial tissue hypoxia and inflammation in vivo. Ann. Rheum. Dis. 69, 1389–1395 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Kennedy, A. et al. Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis Rheum. 62, 711–721 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Kennedy, A. et al. Tumor necrosis factor blocking therapy alters joint inflammation and hypoxia. Arthritis Rheum. 63, 923–932 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Muller-Ladner, U., Gay, R. E. & Gay, S. Activation of synoviocytes. Curr. Opin. Rheumatol. 12, 186–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Koch, A. E. et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J. Immunol. 152, 4149–4156 (1994).

    CAS  PubMed  Google Scholar 

  8. Asahara, T. et al. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ. Res. 83, 233–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Malik, N. M. et al. Regulation of the angiopoietin- Tie ligand-receptor system with a novel splice variant of Tie1 reduces the severity of murine arthritis. Rheumatology (Oxford) 49, 1828–1839 (2010).

    Article  CAS  Google Scholar 

  11. Chen, Y., Donnelly, E., Kobayashi, H., Debusk, L. M. & Lin, P. C. Gene therapy targeting the Tie2 function ameliorates collagen-induced arthritis and protects against bone destruction. Arthritis Rheum. 52, 1585–1594 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Saber, T. et al. Toll-like receptor 2 induced angiogenesis and invasion is mediated through the Tie2 signalling pathway in rheumatoid arthritis. PLoS ONE 6, e23540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Szekanecz, Z., Besenyei, T., Szentpetery, A. & Koch, A. E. Angiogenesis and vasculogenesis in rheumatoid arthritis. Curr. Opin. Rheumatol. 22, 299–306 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Fearon, U. et al. Angiopoietins, growth factors, and vascular morphology in early arthritis. J. Rheumatol. 30, 260–268 (2003).

    CAS  PubMed  Google Scholar 

  15. Biniecka, M. et al. Redox-mediated angiogenesis in the hypoxic joint of inflammatory arthritis. Arthritis Rheumatol. 66, 3300–3310 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Henrotin, Y. E., Bruckner, P. & Pujol, J. P. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11, 747–755 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Ushio-Fukai, M. et al. Novel role of gp91phox-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ. Res. 91, 1160–1167 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Vega, R. B., Horton, J. L. & Kelly, D. P. Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ. Res. 116, 1820–1834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stuart, J. A. & Brown, M. F. Mitochondrial DNA maintenance and bioenergetics. Biochim. Biophys. Acta 1757, 79–89 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Nakahira, K., Hisata, S. & Choi, A. M. The roles of mitochondrial damage-associated molecular patterns in diseases. Antioxid. Redox Signal. 23, 1392–1350 (2015).

    Article  CAS  Google Scholar 

  21. Filippin, L. I., Vercelino, R., Marroni, N. P. & Xavier, R. M. Redox signalling and the inflammatory response in rheumatoid arthritis. Clin. Exp. Immunol. 152, 415–422 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsay, J. et al. Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood 116, 2582–2589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bashir, S., Harris, G., Denman, M. A., Blake, D. R. & Winyard, P. G. Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann. Rheum. Dis. 52, 659–666 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lunec, J., Herbert, K., Blount, S., Griffiths, H. R. & Emery, P. 8-Hydroxydeoxyguanosine. A marker of oxidative DNA damage in systemic lupus erythematosus. FEBS Lett. 348, 131–138 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Hajizadeh, S., DeGroot, J., TeKoppele, J. M., Tarkowski, A. & Collins, L. V. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res. Ther. 5, R234–R240 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Biniecka, M. et al. Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the arthritic joint. Ann. Rheum. Dis. 69, 1172–1178 (2010).

    Article  PubMed  Google Scholar 

  27. Vaamonde-Garcia, C. et al. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 64, 2927–2936 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Valcarcel-Ares, M. N. et al. Mitochondrial dysfunction promotes and aggravates the inflammatory response in normal human synoviocytes. Rheumatology (Oxford) 53, 1332–1343 (2014).

    Article  CAS  Google Scholar 

  29. Onodera, Y., Teramura, T., Takehara, T., Shigi, K. & Fukuda, K. Reactive oxygen species induce Cox-2 expression via TAK1 activation in synovial fibroblast cells. FEBS Open Bio 5, 492–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhi, L., Ustyugova, I. V., Chen, X., Zhang, Q. & Wu, M. X. Enhanced TH17 differentiation and aggravated arthritis in IEX-1-deficient mice by mitochondrial reactive oxygen species-mediated signaling. J. Immunol. 189, 1639–1647 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Vermulst, M. et al. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat. Genet. 39, 540–543 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Biniecka, M. et al. Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis. Arthritis Rheum. 63, 2172–2182 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Moodley, D., Mody, G., Patel, N. & Chuturgoon, A. A. Mitochondrial depolarisation and oxidative stress in rheumatoid arthritis patients. Clin. Biochem. 41, 1396–1401 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Da Sylva, T. R., Connor, A., Mburu, Y., Keystone, E. & Wu, G. E. Somatic mutations in the mitochondria of rheumatoid arthritis synoviocytes. Arthritis Res Ther. 7, R844–R851 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Biniecka, M. et al. Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis. Arthritis Res. Ther. 13, R121 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harty, L. C. et al. Mitochondrial mutagenesis correlates with the local inflammatory environment in arthritis. Ann. Rheum. Dis. 71, 582–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Deng, G. M., Nilsson, I. M., Verdrengh, M., Collins, L. V. & Tarkowski, A. Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat. Med. 5, 702–705 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Collins, L. V., Hajizadeh, S., Holme, E., Jonsson, I. M. & Tarkowski, A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J. Leukoc. Biol. 75, 995–1000 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, J. Z., Liu, Z., Liu, J., Ren, J. X. & Sun, T. S. Mitochondrial DNA induces inflammation and increases TLR9/NF-κB expression in lung tissue. Int. J. Mol. Med. 33, 817–824 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pazmandi, K. et al. Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells. Free Radic. Biol. Med. 77, 281–290 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Li, Y. & Ye, D. Molecular biology for formyl peptide receptors in human diseases. J. Mol. Med. (Berl.) 91, 781–789 (2013).

    Article  CAS  Google Scholar 

  43. Kao, W. et al. A formyl peptide receptor agonist suppresses inflammation and bone damage in arthritis. Br. J. Pharmacol. 171, 4087–4096 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Bours, M. J., Swennen, E. L., Di Virgilio, F., Cronstein, B. N. & Dagnelie, P. C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 112, 358–404 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Miller, C. M. et al. The role of the P2X7 receptor in infectious diseases. PLoS Pathog. 7, e1002212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kato, M., Ospelt, C., Gay, R. E., Gay, S. & Klein, K. Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol. 66, 40–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Xu, K. et al. Autophagy induction contributes to the resistance to methotrexate treatment in rheumatoid arthritis fibroblast-like synovial cells through high mobility group box chromosomal protein 1. Arthritis Res. Ther. 17, 374 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Chang, X. & Wei, C. Glycolysis and rheumatoid arthritis. Int. J. Rheum. Dis. 14, 217–222 (2011).

    Article  PubMed  Google Scholar 

  51. Peansukmanee, S. et al. Effects of hypoxia on glucose transport in primary equine chondrocytes in vitro and evidence of reduced GLUT1 gene expression in pathologic cartilage in vivo. J. Orthop. Res. 27, 529–535 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Ramakrishnan, P. et al. Oxidant conditioning protects cartilage from mechanically induced damage. J. Orthop. Res. 28, 914–920 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Henderson, B., Bitensky, L. & Chayen, J. Glycolytic activity in human synovial lining cells in rheumatoid arthritis. Ann. Rheum. Dis. 38, 63–67 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Naughton, D. et al. An investigation of the abnormal metabolic status of synovial fluid from patients with rheumatoid arthritis by high field proton nuclear magnetic resonance spectroscopy. FEBS Lett. 317, 135–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Ciurtin, C. et al. Correlation between different components of synovial fluid and pathogenesis of rheumatic diseases. Rom. J. Intern. Med. 44, 171–181 (2006).

    PubMed  Google Scholar 

  56. Hitchon, C. A., El-Gabalawy, H. S. & Bezabeh, T. Characterization of synovial tissue from arthritis patients: a proton magnetic resonance spectroscopic investigation. Rheumatol. Int. 29, 1205–1211 (2009).

    Article  PubMed  Google Scholar 

  57. Firestein, G. S., Echeverri, F., Yeo, M., Zvaifler, N. J. & Green, D. R. Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc. Natl Acad. Sci. USA 94, 10895–10900 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tak, P. P., Zvaifler, N. J., Green, D. R. & Firestein, G. S. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol. Today 21, 78–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Tawakol, A. et al. HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages. Arterioscler. Thromb. Vasc. Biol. 35, 1463–1471 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ruscitti, P. et al. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)-1β via the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3 (NLRP3)-inflammasome activation: a possible implication for therapeutic decision in these patients. Clin. Exp. Immunol. 182, 35–44 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Makino, Y. et al. Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells. J. Immunol. 171, 6534–6540 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Gaber, T. et al. Adaptation of human CD4+ T cells to pathophysiological hypoxia: a transcriptome analysis. J. Rheumatol. 36, 2655–2669 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Nakamura, H. et al. TCR engagement increases hypoxia-inducible factor-1α protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. J. Immunol. 174, 7592–7599 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Dieckmann, D., Plottner, H., Berchtold, S., Berger, T. & Schuler, G. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med. 193, 1303–1310 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3 effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Moran, E. M. et al. IL-17A expression is localised to both mononuclear and polymorphonuclear synovial cell infiltrates. PLoS ONE 6, e24048 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dang, E. V. et al. Control of TH17/TREG balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and TREG cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Basdeo, S. A. et al. Polyfunctional, pathogenic CD161+ TH17 lineage cells are resistant to regulatory T cell-mediated suppression in the context of autoimmunity. J. Immunol. 195, 528–540 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Clambey, E. T. et al. Hypoxia-inducible factor-1α-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl Acad. Sci. USA 109, E2784–E2793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shime, H. et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J. Immunol. 180, 7175–7183 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Haas, R. et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 13, e1002202 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Smith, M. D. et al. Standardisation of synovial tissue infiltrate analysis: how far have we come? How much further do we need to go? Ann. Rheum. Dis. 65, 93–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fangradt, M. et al. Human monocytes and macrophages differ in their mechanisms of adaptation to hypoxia. Arthritis Res. Ther. 14, R181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Burke, B. et al. Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am. J. Pathol. 163, 1233–1243 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lewis, J. S., Lee, J. A., Underwood, J. C., Harris, A. L. & Lewis, C. E. Macrophage responses to hypoxia: relevance to disease mechanisms. J. Leukoc. Biol. 66, 889–900 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Hamilton, J. A. et al. Hypoxia enhances the proliferative response of macrophages to CSF-1 and their pro-survival response to TNF. PLoS ONE 7, e45853 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Blagih, J. & Jones, R. G. Polarizing macrophages through reprogramming of glucose metabolism. Cell Metab. 15, 793–795 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Ricciardi, A. et al. Transcriptome of hypoxic immature dendritic cells: modulation of chemokine/receptor expression. Mol. Cancer Res. 6, 175–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Mancino, A. et al. Divergent effects of hypoxia on dendritic cell functions. Blood 112, 3723–3734 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Bosco, M. C. et al. Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood 117, 2625–2639 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Blengio, F. et al. The hypoxic environment reprograms the cytokine/chemokine expression profile of human mature dendritic cells. Immunobiology 218, 76–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Elia, A. R. et al. Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile. J. Leukoc. Biol. 84, 1472–1482 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Yang, M. et al. Hypoxia skews dendritic cells to a T helper type 2-stimulating phenotype and promotes tumour cell migration by dendritic cell-derived osteopontin. Immunology 128, e237–e249 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pierobon, D. et al. Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and TREM-1 expression. Eur. J. Immunol. 43, 949–966 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Semenza, G. L. Life with oxygen. Science 318, 62–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Kaelin, W. G. Jr & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Brouwer, E. et al. Hypoxia inducible factor-1-alpha (HIF-1α) is related to both angiogenesis and inflammation in rheumatoid arthritis. Clin. Exp. Rheumatol. 27, 945–951 (2009).

    CAS  PubMed  Google Scholar 

  94. Giatromanolaki, A. et al. Upregulated hypoxia inducible factor-1α and -2α pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res. Ther. 5, R193–R201 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hu, F. et al. Hypoxia and hypoxia-inducible factor-1α provoke Toll-like receptor signalling-induced inflammation in rheumatoid arthritis. Ann. Rheum. Dis. 73, 928–936 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Larsen, H., Muz, B., Khong, T. L., Feldmann, M. & Paleolog, E. M. Differential effects of TH1 versus TH2 cytokines in combination with hypoxia on HIFs and angiogenesis in RA. Arthritis Res. Ther. 14, R180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hot, A., Zrioual, S., Lenief, V. & Miossec, P. IL-17 and tumour necrosis factor α combination induces a HIF-1α-dependent invasive phenotype in synoviocytes. Ann. Rheum. Dis. 71, 1393–1401 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Li, G. et al. Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-κB/HIF-1α pathway. Mol. Immunol. 53, 227–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Lee, Y. A. et al. Hypoxia differentially affects IL-1β-stimulated MMP-1 and MMP-13 expression of fibroblast-like synoviocytes in an HIF-1α-dependent manner. Rheumatology (Oxford) 51, 443–450 (2012).

    Article  CAS  Google Scholar 

  100. Jeon, C. H. et al. Hypoxia appears at pre-arthritic stage and shows co-localization with early synovial inflammation in collagen induced arthritis. Clin. Exp. Rheumatol. 26, 646–648 (2008).

    CAS  PubMed  Google Scholar 

  101. del Rey, M. J. et al. Human inflammatory synovial fibroblasts induce enhanced myeloid cell recruitment and angiogenesis through a hypoxia-inducible transcription factor 1α/vascular endothelial growth factor-mediated pathway in immunodeficient mice. Arthritis Rheum. 60, 2926–2934 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Shi, M. et al. The protective effects of chronic intermittent hypobaric hypoxia pretreatment against collagen-induced arthritis in rats. J. Inflamm. (Lond.) 12, 23 (2015).

    Article  CAS  Google Scholar 

  103. Darce, J. et al. An N-terminal mutation of the Foxp3 transcription factor alleviates arthritis but exacerbates diabetes. Immunity 36, 731–741 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wu, S. et al. Enhancement of angiogenesis through stabilization of hypoxia-inducible factor-1 by silencing prolyl hydroxylase domain-2 gene. Mol. Ther. 16, 1227–1234 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Muz, B., Larsen, H., Madden, L., Kiriakidis, S. & Paleolog, E. M. Prolyl hydroxylase domain enzyme 2 is the major player in regulating hypoxic responses in rheumatoid arthritis. Arthritis Rheum. 64, 2856–2867 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, S. C. et al. CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression. Cell Death Dis. 5, e1485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gao, W. et al. Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis. Arthritis Rheum. 64, 2104–2113 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Coulon, C. et al. From vessel sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor oxygen-sensing machinery. Arterioscler. Thromb. Vasc. Biol. 30, 2331–2336 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Thoms, B. L. & Murphy, C. L. Inhibition of hypoxia-inducible factor-targeting prolyl hydroxylase domain-containing protein 2 (PHD2) enhances matrix synthesis by human chondrocytes. J. Biol. Chem. 285, 20472–20480 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tambuwala, M. M. et al. Targeted delivery of the hydroxylase inhibitor DMOG provides enhanced efficacy with reduced systemic exposure in a murine model of colitis. J. Control. Release 217, 221–227 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Zhou, J., Schmid, T. & Brune, B. Tumor necrosis factor-α causes accumulation of a ubiquitinated form of hypoxia inducible factor-1α through a nuclear factor-κB-dependent pathway. Mol. Biol. Cell 14, 2216–2225 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jung, Y. J., Isaacs, J. S., Lee, S., Trepel, J. & Neckers, L. IL-1β-mediated up-regulation of HIF-1α via an NFκB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 17, 2115–2117 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Bruning, U. et al. NFκB and HIF display synergistic behaviour during hypoxic inflammation. Cell. Mol. Life Sci. 69, 1319–1329 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Oliver, K. M. et al. Hypoxia activates NF-κB-dependent gene expression through the canonical signaling pathway. Antioxid. Redox Signal. 11, 2057–2064 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Trebec-Reynolds, D. P., Voronov, I., Heersche, J. N. & Manolson, M. F. VEGF-A expression in osteoclasts is regulated by NF-κB induction of HIF-1α. J. Cell. Biochem. 110, 343–351 (2010).

    CAS  PubMed  Google Scholar 

  116. Park, S. Y. et al. HMGB1 induces angiogenesis in rheumatoid arthritis via HIF-1α activation. Eur. J. Immunol. 45, 1216–1227 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Cummins, E. P. et al. Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc. Natl Acad. Sci. USA 103, 18154–18159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cockman, M. E. et al. Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc. Natl Acad. Sci. USA 103, 14767–14772 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Iso, T., Hamamori, Y. & Kedes, L. Notch signaling in vascular development. Arterioscler. Thromb. Vasc. Biol. 23, 543–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Diez, H. et al. Hypoxia-mediated activation of Dll4–Notch–Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp. Cell Res. 313, 1–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Gustafsson, M. V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Zheng, X. et al. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl Acad. Sci. USA 105, 3368–3373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. O'Shea, J. J. Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? Immunity 7, 1–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Krause, A., Scaletta, N., Ji, J. D. & Ivashkiv, L. B. Rheumatoid arthritis synoviocyte survival is dependent on Stat3. J. Immunol. 169, 6610–6616 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Mori, T. et al. IL-1β and TNFα-initiated IL-6–STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int. Immunol. 23, 701–712 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Stump, K. L. et al. A highly selective, orally active inhibitor of Janus kinase 2, CEP-33779, ablates disease in two mouse models of rheumatoid arthritis. Arthritis Res. Ther. 13, R68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gao, W. et al. Hypoxia and STAT3 signalling interactions regulate pro-inflammatory pathways in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1275–1283 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Oh, M. K. et al. Hypoxia-inducible factor-1α enhances haptoglobin gene expression by improving binding of STAT3 to the promoter. J. Biol. Chem. 286, 8857–8865 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jung, J. E. et al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J. 19, 1296–1298 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Jung, J. E. et al. STAT3 inhibits the degradation of HIF-1α by pVHL-mediated ubiquitination. Exp. Mol. Med. 40, 479–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cai, Q., Verma, S. C., Kumar, P., Ma, M. & Robertson, E. S. Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification. PLoS ONE 5, e9720 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Lee, J. H. et al. Notch signal activates hypoxia pathway through HES1-dependent SRC/signal transducers and activators of transcription 3 pathway. Mol. Cancer Res. 7, 1663–1671 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Qiang, L. et al. HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ. 19, 284–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Morga, E. et al. Jagged1 regulates the activation of astrocytes via modulation of NFκB and JAK/STAT/SOCS pathways. Glia 57, 1741–1753 (2009).

    Article  PubMed  Google Scholar 

  136. Sone, H. et al. Neutralization of vascular endothelial growth factor prevents collagen-induced arthritis and ameliorates established disease in mice. Biochem. Biophys. Res. Commun. 281, 562–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. De Bandt, M. et al. Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis. J. Immunol. 171, 4853–4859 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Wang, Y., Da, G., Li, H. & Zheng, Y. Avastin exhibits therapeutic effects on collagen-induced arthritis in rat model. Inflammation 36, 1460–1467 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Robinson, A. et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134, 145–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Knowles, H. J., Tian, Y. M., Mole, D. R. & Harris, A. L. Novel mechanism of action for hydralazine: induction of hypoxia-inducible factor-1 α, vascular endothelial growth factor, and angiogenesis by inhibition of prolyl hydroxylases. Circ. Res. 95, 162–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Semenza, G. L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33, 207–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Majumder, P. K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat. Med. 10, 594–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Demaria, M. & Poli, V. PKM2, STAT3 and HIF-1α: the Warburg's vicious circle. JAKSTAT 1, 194–196 (2012).

    PubMed  PubMed Central  Google Scholar 

  144. Anastasiou, D. et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol. 8, 839–847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Delgoffe, G. M. & Powell, J. D. mTOR: taking cues from the immune microenvironment. Immunology 127, 459–465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Carames, B. et al. Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann. Rheum. Dis. 71, 575–581 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, Y. et al. Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann. Rheum. Dis. 74, 1432–1440 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Son, H. J. et al. Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of Th17/Treg balance and osteoclastogenesis. Mediators Inflamm. 2014, 973986 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Yan, H., Zhou, H. F., Hu, Y. & Pham, C. T. Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. J. Rheum. Dis. Treat. 1, 5 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Treuhaft, P. S. & D. J., M. C. Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases. Arthritis Rheum. 14, 475–484 (1971).

    Article  CAS  PubMed  Google Scholar 

  151. Lund-Olesen, K. Oxygen tension in synovial fluids. Arthritis Rheum. 13, 769–776 (1970).

    Article  CAS  PubMed  Google Scholar 

  152. Sivakumar, B. et al. Synovial hypoxia as a cause of tendon rupture in rheumatoid arthritis. J. Hand Surg. Am. 33, 49–58 (2008).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for article and made substantial contribution to discussions of the content, writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Douglas J. Veale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fearon, U., Canavan, M., Biniecka, M. et al. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol 12, 385–397 (2016). https://doi.org/10.1038/nrrheum.2016.69

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing