Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifactorial role of neutrophils in rheumatoid arthritis

Key Points

  • Neutrophils contribute to rheumatoid arthritis (RA) pathology through the release of cytotoxic and immunoregulatory molecules

  • Neutrophils from patients with RA have an activated phenotype: delayed apoptosis, increased capacity to produce reactive oxygen species, active gene expression and membrane expression of high-affinity Fcγ receptors

  • In mouse models of RA, neutrophils are critical to initiation and progression of the disease

  • Neutrophil extracellular traps might be a source of citrullinated autoantigens (hypercitrullinated cytoplasmic proteins and citrullinated histones) in RA

  • Anticitrullinated protein antibodies are a hallmark of RA, and high titres of such autoantibodies are associated with severe disease

Abstract

Of all cells implicated in the pathology of rheumatoid arthritis (RA), neutrophils possess the greatest cytotoxic potential, owing to their ability to release degradative enzymes and reactive oxygen species. Neutrophils also contribute to the cytokine and chemokine cascades that accompany inflammation, and regulate immune responses via cell–cell interactions. Emerging evidence suggests that neutrophils also have a previously unrecognised role in autoimmune diseases: neutrophils can release neutrophil extracellular traps (NETs) containing chromatin associated with granule enzymes, which not only kill extracellular microorganisms but also provide a source of autoantigens. For example, citrullinated proteins that can act as neoepitopes in loss of immune tolerance are generated by peptidylarginine deiminases, which replace arginine with citrulline residues, within neutrophils. Indeed, antibodies to citrullinated proteins can be detected before the onset of symptoms in patients with RA, and are predictive of erosive disease. Neutrophils from patients with RA have an increased tendency to form NETs containing citrullinated proteins, and sera from such patients contain autoantibodies that recognize these proteins. Thus, in addition to their cytotoxic and immunoregulatory role in RA, neutrophils may be a source of the autoantigens that drive the autoimmune processes underlying this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of neutrophils in pannus formation and joint damage in RA.
Figure 2: Migration of circulating neutrophils to sites of inflammation or infection.
Figure 3: Modulation of innate and adaptive immune responses by activated neutrophils.
Figure 4: NETosis.

Similar content being viewed by others

References

  1. Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reynisdottir, G. et al. Structural lung changes and local anti-citrulline immunity are early features of anti citrullinated-proteins antibodies positive rheumatoid arthritis. Arthritis Rheum. http://dx.doi.org/10.1002/art.38201.

  3. Quirke, A. M. et al. Heightened immune response to autocitrullinated Porphyromonas gingivalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis. Ann. Rheum. Dis. 73, 263–269 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Maresz, K. J. et al. Porphyromonas gingivalis facilitates the development and progression of destructive arthritis through its unique bacterial peptidylarginine deiminase (PAD). PLoS Pathog. 9, e1003627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sabeh, F., Fox, D. & Weiss, S. J. Membrane-type I matrix metalloproteinase-dependent regulation of rheumatoid arthritis synoviocyte function. J. Immunol. 184, 6396–6406 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Miller, M. C. et al. Membrane type 1 matrix metalloproteinase is a crucial promoter of synovial invasion in human rheumatoid arthritis. Arthritis Rheum. 60, 686–697 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tolboom, T. C. et al. Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10. Ann. Rheum. Dis. 61, 975–980 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Murphy, G. & Nagase, H. Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat. Clin. Pract. Rheumatol. 4, 128–135 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Smolen, J. E. et al. L-selectin signaling of neutrophil adhesion and degranulation involves p38 mitogen-activated protein kinase. J. Biol. Chem. 275, 15876–15884 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, L. et al. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-α-activated vascular endothelium under flow. Blood 106, 584–592 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Woodfin, A., Voisin, M. B. & Nourshargh, S. Recent developments and complexities in neutrophil transmigration. Curr. Opin. Hematol. 17, 9–17 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cross, A., Barnes, T., Bucknall, R. C., Edwards, S. W. & Moots, R. J. Neutrophil apoptosis in rheumatoid arthritis is regulated by local oxygen tensions within joints. J. Leukoc. Biol. 80, 521–528 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Walmsley, S. R. et al. Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity. J. Exp. Med. 201, 105–115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wright, H. L., Thomas, H. B., Moots, R. J. & Edwards, S. W. RNA-seq reveals activation of both common and cytokine-specific pathways following neutrophil priming. PLoS ONE 8, e58598 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cassatella, M. A. Neutrophil-derived proteins: selling cytokines by the pound. Adv. Immunol. 73, 369–509 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Fujishima, S. et al. Regulation of neutrophil interleukin 8 gene expression and protein secretion by LPS, TNF-α, and IL-1β. J. Cell Physiol. 154, 478–485 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Nunes, P., Demaurex, N. & Dinauer, M. C. Regulation of the NADPH oxidase and associated ion fluxes during phagocytosis. Traffic 14, 1118–1131 (2013).

    CAS  PubMed  Google Scholar 

  19. Fossati, G., Bucknall, R. C. & Edwards, S. W. Insoluble and soluble immune complexes activate neutrophils by distinct activation mechanisms: changes in functional responses induced by priming with cytokines. Ann. Rheum. Dis. 61, 13–19 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fossati, G., Bucknall, R. C. & Edwards, S. W. Fcγ receptors in autoimmune diseases. Eur. J. Clin. Invest. 31, 821–831 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Robinson, J., Watson, F., Bucknall, R. C. & Edwards, S. W. Activation of neutrophil reactive-oxidant production by synovial fluid from patients with inflammatory joint disease. Soluble and insoluble immunoglobulin aggregates activate different pathways in primed and unprimed cells. Biochem. J. 286 (Pt 2), 345–351 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stockley, R. A. Neutrophils and the pathogenesis of COPD. Chest 121, 151S–155S (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Derouet, M., Thomas, L., Cross, A., Moots, R. J. & Edwards, S. W. Granulocyte macrophage colony-stimulating factor signaling and proteasome inhibition delay neutrophil apoptosis by increasing the stability of Mcl-1. J. Biol. Chem. 279, 26915–26921 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Derouet, M. et al. Sodium salicylate promotes neutrophil apoptosis by stimulating caspase-dependent turnover of Mcl-1. J. Immunol. 176, 957–965 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Thomas, L. W., Lam, C. & Edwards, S. W. Mcl-1; the molecular regulation of protein function. FEBS Lett. 584, 2981–2989 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Savill, J. S. et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest. 83, 865–875 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eggleton, P., Wang, L., Penhallow, J., Crawford, N. & Brown, K. A. Differences in oxidative response of subpopulations of neutrophils from healthy subjects and patients with rheumatoid arthritis. Ann. Rheum. Dis. 54, 916–923 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wright, H. L., Chikura, B., Bucknall, R. C., Moots, R. J. & Edwards, S. W. Changes in expression of membrane TNF, NF-κB activation and neutrophil apoptosis during active and resolved inflammation. Ann. Rheum. Dis. 70, 537–543 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Matsumoto, T. et al. The membrane proteinase 3 expression on neutrophils was downregulated after treatment with infliximab in patients with rheumatoid arthritis. Clin. Appl. Thromb. Hemost. 14, 186–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Wittkowski, H. et al. Effects of intra-articular corticosteroids and anti-TNF therapy on neutrophil activation in rheumatoid arthritis. Ann. Rheum. Dis. 66, 1020–1025 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chakravarti, A., Raquil, M. A., Tessier, P. & Poubelle, P. E. Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood 114, 1633–1644 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Assi, L. K. et al. Tumor necrosis factor α activates release of B lymphocyte stimulator by neutrophils infiltrating the rheumatoid joint. Arthritis Rheum. 56, 1776–1786 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cross, A., Bucknall, R. C., Cassatella, M. A., Edwards, S. W. & Moots, R. J. Synovial fluid neutrophils transcribe and express class II major histocompatibility complex molecules in rheumatoid arthritis. Arthritis Rheum. 48, 2796–2806 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Lally, F. et al. A novel mechanism of neutrophil recruitment in a coculture model of the rheumatoid synovium. Arthritis Rheum. 52, 3460–3469 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parsonage, G. et al. Prolonged, granulocyte-macrophage colony-stimulating factor-dependent, neutrophil survival following rheumatoid synovial fibroblast activation by IL-17 and TNFα. Arthritis Res. Ther. 10, R47–R59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raza, K. et al. Synovial fluid leukocyte apoptosis is inhibited in patients with very early rheumatoid arthritis. Arthritis Res. Ther. 8, R120–R127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weinmann, P. et al. Delayed neutrophil apoptosis in very early rheumatoid arthritis patients is abrogated by methotrexate therapy. Clin. Exp. Rheumatol. 25, 885–887 (2007).

    CAS  PubMed  Google Scholar 

  38. Rollet-Labelle, E. et al. Cross-linking of IgGs bound on circulating neutrophils leads to an activation of endothelial cells: possible role of rheumatoid factor in rheumatoid arthritis-associated vascular dysfunction. J. Inflamm. (Lond.) 10, 27 (2013).

    Article  CAS  Google Scholar 

  39. Nurcombe, H. L., Bucknall, R. C. & Edwards, S. W. Neutrophils isolated from the synovial fluid of patients with rheumatoid arthritis: priming and activation in vivo. Ann. Rheum. Dis. 50, 147–153 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Watson, F., Robinson, J. J., Phelan, M., Bucknall, R. C. & Edwards, S. W. Receptor expression in synovial fluid neutrophils from patients with rheumatoid arthritis. Ann. Rheum. Dis. 52, 354–359 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quayle, J. A., Watson, F., Bucknall, R. C. & Edwards, S. W. Neutrophils from the synovial fluid of patients with rheumatoid arthritis express the high affinity immunoglobulin G receptor, FcγRI (CD64): role of immune complexes and cytokines in induction of receptor expression. Immunology 91, 266–273 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robinson, J. J., Watson, F., Bucknall, R. C. & Edwards, S. W. Role of Fcγ receptors in the activation of neutrophils by soluble and insoluble immunoglobulin aggregates isolated from the synovial fluid of patients with rheumatoid arthritis. Ann. Rheum. Dis. 53, 515–520 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hallett, M. B. & Lloyds, D. Neutrophil priming: the cellular signals that say 'amber' but not 'green'. Immunol. Today 16, 264–268 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Fossati, G., Moots, R. J., Bucknall, R. C. & Edwards, S. W. Differential role of neutrophil Fcγ receptor IIIB (CD16) in phagocytosis, bacterial killing, and responses to immune complexes. Arthritis Rheum. 46, 1351–1361 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Lefrancais, E. et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc. Natl Acad. Sci. USA 109, 1673–1678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van den Steen, P. E. et al. Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J. 16, 379–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Katano, M. et al. Implication of granulocyte-macrophage colony-stimulating factor induced neutrophil gelatinase-associated lipocalin in pathogenesis of rheumatoid arthritis revealed by proteome analysis. Arthritis Res. Ther. 11, R3 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elsaid, K. A., Jay, G. D. & Chichester, C. O. Detection of collagen type II and proteoglycans in the synovial fluids of patients diagnosed with non-infectious knee joint synovitis indicates early damage to the articular cartilage matrix. Osteoarthritis Cartilage 11, 673–680 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Baici, A., Salgam, P., Cohen, G., Fehr, K. & Boni, A. Action of collagenase and elastase from human polymorphonuclear leukocytes on human articular cartilage. Rheumatol. Int. 2, 11–16 (1982).

    Article  CAS  PubMed  Google Scholar 

  50. Oseas, R., Yang, H. H., Baehner, R. L. & Boxer, L. A. Lactoferrin: a promoter of polymorphonuclear leukocyte adhesiveness. Blood 57, 939–945 (1981).

    CAS  PubMed  Google Scholar 

  51. Sopata, I. et al. Neutrophil gelatinase levels in plasma and synovial fluid of patients with rheumatic diseases. Rheumatol. Int. 15, 9–14 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Pham, C. T. Neutrophil serine proteases: specific regulators of inflammation. Nat. Rev. Immunol. 6, 541–550 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, C. H. et al. Expression of CD147 (EMMPRIN) on neutrophils in rheumatoid arthritis enhances chemotaxis, matrix metalloproteinase production and invasiveness of synoviocytes. J. Cell. Mol. Med. 15, 850–860 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra40 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baillet, A. et al. Synovial fluid proteomic fingerprint: S100A8, S100A9 and S100A12 proteins discriminate rheumatoid arthritis from other inflammatory joint diseases. Rheumatology 49, 671–682 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Simard, J. C., Girard, D. & Tessier, P. A. Induction of neutrophil degranulation by S100A9 via a MAPK-dependent mechanism. J. Leukoc. Biol. 87, 905–914 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Laurindo, I. M., Mello, S. B. & Cossermelli, W. Influence of low doses of methotrexate on superoxide anion production by polymorphonuclear leukocytes from patients with rheumatoid arthritis. J. Rheumatol. 22, 633–638 (1995).

    CAS  PubMed  Google Scholar 

  59. Kraan, M. C. et al. Inhibition of neutrophil migration soon after initiation of treatment with leflunomide or methotrexate in patients with rheumatoid arthritis: findings in a prospective, randomized, double-blind clinical trial in fifteen patients. Arthritis Rheum. 43, 1488–1495 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Sperling, R. I. et al. Acute and chronic suppression of leukotriene B4 synthesis ex vivo in neutrophils from patients with rheumatoid arthritis beginning treatment with methotrexate. Arthritis Rheum. 35, 376–384 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Elferink, J. G., Daha, M. R. & de Koster, B. M. A cyclic GMP- and G-kinase-dependent effect of azathioprine on migration by human neutrophils. Cell. Mol. Life Sci. 53, 593–599 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Akahoshi, T. et al. Rapid induction of neutrophil apoptosis by sulfasalazine: implications of reactive oxygen species in the apoptotic process. J. Leukoc. Biol. 62, 817–826 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Wandall, J. H. Effects of sulphasalazine and its metabolites on neutrophil chemotaxis, superoxide production, degranulation and translocation of cytochrome b-245. Aliment. Pharmacol. Ther. 5, 609–619 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Cross, A., Moots, R. J. & Edwards, S. W. The dual effects of TNFα on neutrophil apoptosis are mediated via differential effects on expression of Mcl-1 and Bfl-1. Blood 111, 878–884 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Ginis, I. & Tauber, A. I. Activation mechanisms of adherent human neutrophils. Blood 76, 1233–1239 (1990).

    CAS  PubMed  Google Scholar 

  66. Wipke, B. T. & Allen, P. M. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J. Immunol. 167, 1601–1608 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Tanaka, D., Kagari, T., Doi, H. & Shimozato, T. Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis. Immunology 119, 195–202 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Coelho, F. M. et al. The chemokine receptors CXCR1/CXCR2 modulate antigen-induced arthritis by regulating adhesion of neutrophils to the synovial microvasculature. Arthritis Rheum. 58, 2329–2337 (2008).

    Article  PubMed  Google Scholar 

  69. Grespan, R. et al. CXCR2-specific chemokines mediate leukotriene B4-dependent recruitment of neutrophils to inflamed joints in mice with antigen-induced arthritis. Arthritis Rheum. 58, 2030–2040 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Barsante, M. M. et al. Blockade of the chemokine receptor CXCR2 ameliorates adjuvant-induced arthritis in rats. Br. J. Pharmacol. 153, 992–1002 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Min., S. H. et al. Pharmacological targeting reveals distinct roles for CXCR2/CXCR1 and CCR2 in a mouse model of arthritis. Biochem. Biophys. Res. Commun. 391, 1080–1086 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Cunha, T. M. et al. Treatment with DF 2162, a non-competitive allosteric inhibitor of CXCR1/2, diminishes neutrophil influx and inflammatory hypernociception in mice. Br. J. Pharmacol. 154, 460–470 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grant, E. P. et al. Essential role for the C5a receptor in regulating the effector phase of synovial infiltration and joint destruction in experimental arthritis. J. Exp. Med. 196, 1461–1471 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tsuboi, N. et al. Regulation of human neutrophil Fcγ receptor IIa by C5a receptor promotes inflammatory arthritis in mice. Arthritis Rheum. 63, 467–478 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sadik, C. D., Kim, N. D., Iwakura, Y. & Luster, A. D. Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling. Proc. Natl Acad. Sci. USA 109, E3177–E3185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, N. D., Chou, R. C., Seung, E., Tager, A. M. & Luster, A. D. A unique requirement for the leukotriene B4 receptor BLT1 for neutrophil recruitment in inflammatory arthritis. J. Exp. Med. 203, 829–835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grevers, L. C. et al. Different amplifying mechanisms of interleukin-17 and interferon-γ in Fcγ receptor-mediated cartilage destruction in murine immune complex-mediated arthritis. Arthritis Rheum. 60, 396–407 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Damsker, J. M. et al. Targeting the chemotactic function of CD147 reduces collagen-induced arthritis. Immunology 126, 55–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sarraj, B., Ludanyi, K., Glant, T. T., Finnegan, A. & Mikecz, K. Expression of CD44 and L-selectin in the innate immune system is required for severe joint inflammation in the proteoglycan-induced murine model of rheumatoid arthritis. J. Immunol. 177, 1932–1940 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Eyles, J. L. et al. A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis. Blood 112, 5193–5201 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Williams, A. S. et al. Interferon-γ protects against the development of structural damage in experimental arthritis by regulating polymorphonuclear neutrophil influx into diseased joints. Arthritis Rheum. 56, 2244–2254 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Kelchtermans, H. et al. Effector mechanisms of interleukin-17 in collagen-induced arthritis in the absence of interferon-γ and counteraction by interferon-γ. Arthritis Res. Ther. 11, R122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Davey, M. S. et al. Failure to detect production of IL-10 by activated human neutrophils. Nat. Immunol. 12, 1017–1020 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Branzk, N. & Papayannopoulos, V. Molecular mechanisms regulating NETosis in infection and disease. Semin. Immunopathol. 35, 513–530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cooper, P. R., Palmer, L. J. & Chapple, I. L. Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe? Periodontol. 2000 63, 165–197 (2013).

    Article  PubMed  Google Scholar 

  88. Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I. & Simon, H. U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 16, 1438–1444 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, Y. et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184, 205–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Knight, J. S., Carmona-Rivera, C. & Kaplan, M. J. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front. Immunol. 3, 380 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self–DNA–peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Kaplan, M. J. Neutrophils in the pathogenesis and manifestations of SLE. Nat. Rev. Rheumatol. 7, 691–699 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Midgley, A., McLaren, Z., Moots, R. J., Edwards, S. W. & Beresford, M. W. The role of neutrophil apoptosis in juvenile-onset systemic lupus erythematosus. Arthritis Rheum. 60, 2390–2401 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Hacbarth, E. & Kajdacsy-Balla, A. Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis, and acute rheumatic fever. Arthritis Rheum. 29, 1334–1342 (1986).

    Article  CAS  PubMed  Google Scholar 

  97. Denny, M. F. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J. Immunol. 184, 3284–3297 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Theilgaard-Monch, K. et al. The transcriptional program of terminal granulocytic differentiation. Blood 105, 1785–1796 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Hakkim, A. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813–9818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Romero, V. et al. Immune-mediated pore-forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci. Transl. Med. 5, 209ra150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Scally, S. W. et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med. 210, 2569–2582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pratesi, F. et al. Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-202765.

Download references

Acknowledgements

The authors thank Dr Will Boswell for provision of the MRI scan in Figure 1. H.L.W.'s work is supported by grant number 19437 from Arthritis Research UK.

Author information

Authors and Affiliations

Authors

Contributions

H.L.W. and S.W.E. researched the data for article and wrote the manuscript. All authors (H.L.W., R.J.M. and S.W.E.) contributed substantially to discussions of the article content, and review or editing of the manuscript before submission.

Corresponding author

Correspondence to Steven W. Edwards.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, H., Moots, R. & Edwards, S. The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol 10, 593–601 (2014). https://doi.org/10.1038/nrrheum.2014.80

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.80

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing