Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pre-rheumatoid arthritis: predisposition and transition to clinical synovitis

Abstract

Multiple proven and potential risk factors for the development of rheumatoid arthritis (RA) have been identified, and represent interactions between genes and the environment. Proven risk factors include genetic influences on the function of the innate and adaptive immune systems, smoking, anti-citrullinated protein antibodies (ACPAs), and rheumatoid factors (RF). Potential risk factors include epigenetic control of gene expression, the microbiome and other environmental factors, Toll-like receptors, cytokines, and Fc receptors. Preclinical abnormalities such as circulating RF and ACPAs may occur more than 10 years prior to the onset of clinical disease. However, the precise mechanisms whereby these risk factors lead to clinical disease remain unclear. It is possible that, combined with activation of the innate immune system, a subset of ACPAs initiates the disease in the cartilage or synovium after binding to endogenous citrullinated proteins. Subsequent engagement of Fc receptors and complement activation would lead to secondary inflammation in the synovium with induction of a perpetuating cycle of chronic synovitis.

Key Points

  • Rheumatoid arthritis (RA) exhibits multiple predisposing factors that precede its development

  • Genetic risk factors are prominent, involving genes of the MHC as well as many non-MHC genes associated with immune responses and inflammation

  • The presence of elevated serum levels of autoantibodies such as rheumatoid factors and antibodies to citrullinated proteins may precede the clinical onset of RA by over 10 years and could, in some cases, represent a normal adaptive response to neoantigens

  • The most important environmental risk factor for RA defined to date is smoking

  • The precise mechanism of initiation of the clinical disease is unknown but may involve antibodies directed against specific citrullinated proteins and repeated activation of innate immunity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed mechanism of initiation of RA.

Similar content being viewed by others

References

  1. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Klareskog, L., Ronnelid, J., Lundberg, K., Padyukov, L. & Alfredsson, L. Immunity to citrullinated proteins in rheumatoid arthritis. Annu. Rev. Immunol. 26, 651–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Deane, K. D., Norris, J. M. & Holers, V. M. Preclinical rheumatoid arthritis: identification, evaluation, and future directions for investigation. Rheum. Dis. Clin. North Am. 36, 213–241 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Raychaudhuri, S. Recent advances in the genetics of rheumatoid arthritis. Curr. Opin. Rheumatol. 22, 109–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deane, K. D. Learning about the natural history of rheumatoid arthritis development through prospective study of subjects at high risk of rheumatoid arthritis-related autoimmunity. Arthritis Rheum. 64, 1708–1712 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. MacGregor, A. J. et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43, 30–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. van der Woude, D. et al. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum. 60, 916–923 (2009).

    Article  PubMed  Google Scholar 

  8. Deighton, C. M., Walker, D. J., Griffiths, I. D. & Roberts, D. F. The contribution of HLA to rheumatoid arthritis. Clin. Genet. 36, 178–182 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Stastny, P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med. 298, 869–871 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. van der Woude, D. et al. Protection against anti-citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA-DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheum. 62, 1236–1245 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Huizinga, T. W. et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum. 52, 3433–3438 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. van der Helm-van Mil, A. H. et al. The HLA-DRB1 shared epitope alleles are primarily a risk factor for anti-cyclic citrullinated peptide antibodies and are not an independent risk factor for development of rheumatoid arthritis. Arthritis Rheum. 54, 1117–1121 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Hill, J. A. et al. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J. Immunol. 171, 538–541 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. De Almeida, D. E. et al. Immune dysregulation by the rheumatoid arthritis shared epitope. J. Immunol. 185, 1927–1934 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, H. S. et al. Several regions in the major histocompatibility complex confer risk for anti-CCP-antibody positive rheumatoid arthritis, independent of the DRB1 locus. Mol. Med. 14, 293–300 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ding, B. et al. Different patterns of associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in the extended major histocompatibility complex region. Arthritis Rheum. 60, 30–38 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vignal, C. et al. Genetic association of the major histocompatibility complex with rheumatoid arthritis implicates two non-DRB1 loci. Arthritis Rheum. 60, 53–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karlson, E. W. et al. Cumulative association of 22 genetic variants with seropositive rheumatoid arthritis risk. Ann. Rheum. Dis. 69, 1077–1085 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zikherman, J. & Weiss, A. Unraveling the functional implications of GWAS: how T cell protein tyrosine phosphatase drives autoimmune disease. J. Clin. Invest. 121, 4618–4621 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37, 1317–1319 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Wiede, F. et al. T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J. Clin. Invest. 121, 4758–4774 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okada, Y. et al. Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat. Genet. 44, 511–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Verpoort, K. N. et al. Association of HLA-DR3 with anti-cyclic citrullinated peptide antibody-negative rheumatoid arthritis. Arthritis Rheum. 52, 3058–3062 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Sigurdsson, S. et al. Association of a haplotype in the promoter region of the interferon regulatory factor 5 gene with rheumatoid arthritis. Arthritis Rheum. 56, 2202–2210 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Padyukov, L. et al. A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann. Rheum. Dis. 70, 259–265 (2011).

    Article  PubMed  Google Scholar 

  30. Richardson, B. Primer: epigenetics of autoimmunity. Nat. Clin. Pract. Rheumatol. 3, 521–527 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Meinecke, I. et al. Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proc. Natl Acad. Sci. USA 104, 5073–5078 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, J. K., Samaranayake, M. & Pradhan, S. Epigenetic mechanisms in mammals. Cell. Mol. Life Sci. 66, 596–612 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Trenkmann, M., Brock, M., Ospelt, C. & Gay, S. Epigenetics in rheumatoid arthritis. Clin. Rev. Allergy Immunol. 39, 10–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Ospelt, C., Reedquist, K. A., Gay, S. & Tak, P. P. Inflammatory memories: is epigenetics the missing link to persistent stromal cell activation in rheumatoid arthritis? Autoimmun. Rev. 10, 519–524 (2011).

    Article  PubMed  Google Scholar 

  36. Firestein, G. S. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum. 39, 1781–1790 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Horiuchi, M. et al. Expression and function of histone deacetylases in rheumatoid arthritis synovial fibroblasts. J. Rheumatol. 36, 1580–1589 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Rosenfeld, C. S. Animal models to study environmental epigenetics. Biol. Reprod. 82, 473–488 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Hollingsworth, J. W. et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J. Clin. Invest. 118, 3462–3469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Stanczyk, J. et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 63, 373–381 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stanczyk, J. et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 58, 1001–1009 (2008).

    Article  PubMed  Google Scholar 

  42. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Duroux-Richard, I., Jorgensen, C. & Apparailly, F. What do microRNAs mean for rheumatoid arthritis? Arthritis Rheum. 64, 11–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mendell, J. T. & Olson, E. N. MicroRNAs in stress signaling and human disease. Cell 148, 1172–1187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Renz, H., Brandtzaeg, P. & Hornef, M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat. Rev. Immunol. 12, 9–23 (2012).

    Article  CAS  Google Scholar 

  47. Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chervonsky, A. V. Influence of microbial environment on autoimmunity. Nat. Immunol. 11, 28–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Toivanen, P. Normal intestinal microbiota in the aetiopathogenesis of rheumatoid arthritis. Ann. Rheum. Dis. 62, 807–811 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scher, J. U. & Abramson, S. B. The microbiome and rheumatoid arthritis. Nat. Rev. Rheumatol. 7, 569–578 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Horai, R. et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J. Exp. Med. 191, 313–320 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tilg, H. Diet and intestinal immunity. N. Engl. J. Med. 366, 181–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Faith, J. J., McNulty, N. P., Rey, F. E. & Gordon, J. I. Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science 333, 101–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).

    Article  PubMed  Google Scholar 

  58. Mills, K. H. TLR-dependent T cell activation in autoimmunity. Nat. Rev. Immunol. 11, 807–822 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Santegoets, K. C., van Bon, L., van den Berg, W. B., Wenink, M. H. & Radstake, T. R. Toll-like receptors in rheumatic diseases: are we paying a high price for our defense against bugs? FEBS Lett. 585, 3660–3666 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goh, F. G. & Midwood, K. S. Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology 51, 7–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Tamaki, Y. et al. Expression of Toll-like receptors and their signaling pathways in rheumatoid synovitis. J. Rheumatol. 38, 810–820 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Choe, J. Y., Crain, B., Wu, S. R. & Corr, M. Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by toll-like receptor 4 signaling. J. Exp. Med. 197, 537–542 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carty, S. M., Snowden, N. & Silman, A. J. Should infection still be considered as the most likely triggering factor for rheumatoid arthritis? J. Rheumatol. 30, 425–429 (2003).

    PubMed  Google Scholar 

  65. Vandenbroucke, J. P. et al. Frequency of infections among rheumatoid arthritis patients, before and after disease onset. Arthritis Rheum. 30, 810–813 (1987).

    Article  CAS  PubMed  Google Scholar 

  66. Darrah, E., Rosen, A., Giles, J. T. & Andrade, F. Peptidylarginine deiminase 2, 3 and 4 have distinct specificities against cellular substrates: novel insights into autoantigen selection in rheumatoid arthritis. Ann. Rheum. Dis. 71, 92–98 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Suzuki, A. et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34, 395–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Kochi, Y. et al. PADI4 polymorphism predisposes male smokers to rheumatoid arthritis. Ann. Rheum. Dis. 70, 512–515 (2011).

    Article  PubMed  Google Scholar 

  69. Harris, M. L. et al. Association of autoimmunity to peptidyl arginine deiminase type 4 with genotype and disease severity in rheumatoid arthritis. Arthritis Rheum. 58, 1958–1967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kolfenbach, J. R. et al. Autoimmunity to peptidyl arginine deiminase type 4 precedes clinical onset of rheumatoid arthritis. Arthritis Rheum. 62, 2633–2639 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Li, P. et al. Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene 29, 3153–3162 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Klareskog, L., Malmstrom, V., Lundberg, K., Padyukov, L. & Alfredsson, L. Smoking, citrullination and genetic variability in the immunopathogenesis of rheumatoid arthritis. Semin. Immunol. 23, 92–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. de Pablo, P., Chapple, I. L., Buckley, C. D. & Dietrich, T. Periodontitis in systemic rheumatic diseases. Nat. Rev. Rheumatol. 5, 218–224 (2009).

    Article  PubMed  Google Scholar 

  74. Detert, J., Pischon, N., Burmester, G. R. & Buttgereit, F. The association between rheumatoid arthritis and periodontal disease. Arthritis Res. Ther. 12, 218 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lundberg, K., Wegner, N., Yucel-Lindberg, T. & Venables, P. J. Periodontitis in RA-the citrullinated enolase connection. Nat. Rev. Rheumatol. 6, 727–730 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Wegner, N. et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62, 2662–2672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Scher, J. U. et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum. doi:10.1002/art.34539

  78. Vessey, M. P., Villard-Mackintosh, L. & Yeates, D. Oral contraceptives, cigarette smoking and other factors in relation to arthritis. Contraception 35, 457–464 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. Stolt, P. et al. Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann. Rheum. Dis. 62, 835–841 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Silman, A. J., Newman, J. & MacGregor, A. J. Cigarette smoking increases the risk of rheumatoid arthritis. Results from a nationwide study of disease-discordant twins. Arthritis Rheum. 39, 732–735 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Padyukov, L., Silva, C., Stolt, P., Alfredsson, L. & Klareskog, L. A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum. 50, 3085–3092 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Linn-Rasker, S. P. et al. Smoking is a risk factor for anti-CCP antibodies only in rheumatoid arthritis patients who carry HLA-DRB1 shared epitope alleles. Ann. Rheum. Dis. 65, 366–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Makrygiannakis, D. et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann. Rheum. Dis. 67, 1488–1492 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Klareskog, L., Padyukov, L. & Alfredsson, L. Smoking as a trigger for inflammatory rheumatic diseases. Curr. Opin. Rheumatol. 19, 49–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Verpoort, K. N. et al. Association of smoking with the constitution of the anti-cyclic citrullinated peptide response in the absence of HLA-DRB1 shared epitope alleles. Arthritis Rheum. 56, 2913–2918 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Costenbader, K. H., Chang, S. C., De Vivo, I., Plenge, R. & Karlson, E. W. Genetic polymorphisms in PTPN22, PADI-4, and CTLA-4 and risk for rheumatoid arthritis in two longitudinal cohort studies: evidence of gene-environment interactions with heavy cigarette smoking. Arthritis Res. Ther. 10, R52 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kallberg, H. et al. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am. J. Hum. Genet. 80, 867–875 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Morgan, A. W. et al. Reevaluation of the interaction between HLA-DRB1 shared epitope alleles, PTPN22, and smoking in determining susceptibility to autoantibody-positive and autoantibody-negative rheumatoid arthritis in a large UK Caucasian population. Arthritis Rheum. 60, 2565–2576 (2009).

    Article  PubMed  Google Scholar 

  90. Kallberg, H. et al. Smoking is a major preventable risk factor for rheumatoid arthritis: estimations of risks after various exposures to cigarette smoke. Ann. Rheum. Dis. 70, 508–511 (2011).

    Article  PubMed  Google Scholar 

  91. Willemze, A. et al. The interaction between HLA shared epitope alleles and smoking and its contribution to autoimmunity against several citrullinated antigens. Arthritis Rheum. 63, 1823–1832 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Keenan, B. T. et al. Effect of interactions of glutathione S-transferase T1, M1, and P1 and HMOX1 gene promoter polymorphisms with heavy smoking on the risk of rheumatoid arthritis. Arthritis Rheum. 62, 3196–3210 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mikuls, T. R. et al. Associations of cigarette smoking with rheumatoid arthritis in African Americans. Arthritis Rheum. 62, 3560–3568 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mikuls, T. R. et al. Impact of interactions of cigarette smoking with NAT2 polymorphisms on rheumatoid arthritis risk in African Americans. Arthritis Rheum. 64, 655–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stolt, P. et al. Silica exposure among male current smokers is associated with a high risk of developing ACPA-positive rheumatoid arthritis. Ann. Rheum. Dis. 69, 1072–1076 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Colebatch, A. N. & Edwards, C. J. The influence of early life factors on the risk of developing rheumatoid arthritis. Clin. Exp. Immunol. 163, 11–16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mandl, L. A., Costenbader, K. H., Simard, J. F. & Karlson, E. W. Is birthweight associated with risk of rheumatoid arthritis? Data from a large cohort study. Ann. Rheum. Dis. 68, 514–518 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Karlson, E. W., Mandl, L. A., Hankinson, S. E. & Grodstein, F. Do breast-feeding and other reproductive factors influence future risk of rheumatoid arthritis? Results from the Nurses' Health Study. Arthritis Rheum. 50, 3458–3467 (2004).

    Article  PubMed  Google Scholar 

  99. Hart, J. E., Laden, F., Puett, R. C., Costenbader, K. H. & Karlson, E. W. Exposure to traffic pollution and increased risk of rheumatoid arthritis. Environ. Health Perspect. 117, 1065–1069 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Klareskog, L., Catrina, A. I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. El-Gabalawy, H. The preclinical stages of RA: lessons from human studies and animal models. Best Clin. Pract. Rheumatol. 23, 49–58 (2009).

    Article  CAS  Google Scholar 

  102. Wegner, N. et al. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol. Rev. 233, 34–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Willemze, A., Trouw, L. A., Toes, R. E. & Huizinga, T. W. The influence of ACPA status and characteristics on the course of RA. Nat. Rev. Rheumatol. 8, 144–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Vossenaar, E. R. et al. The presence of citrullinated proteins is not specific for rheumatoid synovial tissue. Arthritis Rheum. 50, 3485–3494 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Makrygiannakis, D. et al. Citrullination is an inflammation-dependent process. Ann. Rheum. Dis. 65, 1219–1222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Snir, O. et al. Antibodies to several citrullinated antigens are enriched in the joints of rheumatoid arthritis patients. Arthritis Rheum. 62, 44–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Bae, S. et al. α-enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis. J. Immunol. 189, 365–372 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Demoruelle, M. K. et al. Brief Report: Airways abnormalities and rheumatoid arthritis-related autoantibodies in subjects without arthritis: Early injury or initiating site of autoimmunity? Arthritis Rheum. 64, 1756–1761 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Brown, K. Rheumatoid lung disease. Proc. Am. Thorac. Soc. 4, 443–448 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Shi, J. et al. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc. Natl Acad. Sci. USA 108, 17372–17377 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mydel, P. et al. Carbamylation-dependent activation of T cells: a novel mechanism in the pathogenesis of autoimmune arthritis. J. Immunol. 184, 6882–6890 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004).

    Article  PubMed  Google Scholar 

  113. Rantapaa-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Mjaavatten, M. D. et al. The likelihood of persistent arthritis increases with the level of anti-citrullinated peptide antibody and immunoglobulin M rheumatoid factor: a longitudinal study of 376 patients with very early undifferentiated arthritis. Arthritis Res. Ther. 12, R76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vander Cruyssen, B. et al. Prediction models for rheumatoid arthritis during diagnostic investigation: evaluation of combinations of rheumatoid factor, anti-citrullinated protein/peptide antibodies and the human leucocyte antigen-shared epitope. Ann. Rheum. Dis. 66, 364–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Hueber, W. et al. Proteomic analysis of secreted proteins in early rheumatoid arthritis: anti-citrulline autoreactivity is associated with up regulation of proinflammatory cytokines. Ann. Rheum. Dis. 66, 712–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Rantapaa-Dahlqvist, S., Boman, K., Tarkowski, A. & Hallmans, G. Up regulation of monocyte chemoattractant protein-1 expression in anti-citrulline antibody and immunoglobulin M rheumatoid factor positive subjects precedes onset of inflammatory response and development of overt rheumatoid arthritis. Ann. Rheum. Dis. 66, 121–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Jorgensen, K. T. et al. Cytokines, autoantibodies and viral antibodies in premorbid and postdiagnostic sera from patients with rheumatoid arthritis: case-control study nested in a cohort of Norwegian blood donors. Ann. Rheum. Dis. 67, 860–866 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Kokkonen, H. et al. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum. 62, 383–391 (2010).

    CAS  PubMed  Google Scholar 

  120. El-Gabalawy, H. S. et al. Familial clustering of the serum cytokine profile in the relatives of rheumatoid arthritis patients. Arthritis Rheum. 64, 1720–1729 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Deane, K. D. et al. The number of elevated cytokines and chemokines in preclinical seropositive rheumatoid arthritis predicts time to diagnosis in an age-dependent manner. Arthritis Rheum. 62, 3161–3172 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bevaart, L., Vervoordeldonk, M. J. & Tak, P. P. Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis? Arthritis Rheum. 62, 2192–2205 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Matsumoto, I. et al. How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease. Nat. Immunol. 3, 360–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Wipke, B. T., Wang, Z., Nagengast, W., Reichert, D. E. & Allen, P. M. Staging the initiation of autoantibody-induced arthritis: a critical role for immune complexes. J. Immunol. 172, 7694–7702 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Binstadt, B. A. et al. Particularities of the vasculature can promote the organ specificity of autoimmune attack. Nat. Immunol. 7, 284–292 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Uysal, H. et al. Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis. J. Exp. Med. 206, 449–462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Uysal, H. et al. Antibodies to citrullinated proteins: molecular interactions and arthritogenicity. Immunol. Rev. 233, 9–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Korb-Pap, A. et al. Early structural changes in cartilage and bone are required for the attachment and invasion of inflamed synovial tissue during destructive inflammatory arthritis. Ann. Rheum. Dis. 71, 1004–1011 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Kraan, M. C. et al. The development of clinical signs of rheumatoid synovial inflammation is associated with increased synthesis of the chemokine CXCL8 (interleukin-8). Arthritis Res. 3, 65–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Kraan, M. C. et al. Asymptomatic synovitis precedes clinically manifest arthritis. Arthritis Rheum. 41, 1481–1488 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. van de Sande, M. G. et al. Different stages of rheumatoid arthritis: features of the synovium in the preclinical phase. Ann. Rheum. Dis. 70, 772–777 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. van Baarsen, L. G. M. et al. Investigating the cellular composition of lymph nodes in preclinical and early inflammatory arthritis. Arthritis Rheum. 2011, S848 (2011).

    Google Scholar 

  133. Han, Z., Boyle, D. L., Manning, A. M. & Firestein, G. S. AP-1 and NF-κB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity 28, 197–208 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Fukushima, A., Boyle, D. L., Corr, M. & Firestein, G. S. Kinetic analysis of synovial signalling and gene expression in animal models of arthritis. Ann. Rheum. Dis. 69, 918–923 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Zhao, X. et al. Circulating immune complexes contain citrullinated fibrinogen in rheumatoid arthritis. Arthritis Res. Ther. 10, R94 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Willemze, A., Ioan-Facsinay, A. & El-Gabalawy, H. Anti-citrullinated protein antibody response associated with synovial immune deposits in a patient with suspected early rheumatoid arthritis. J. Rheumatol. 35, 2282–2284 (2008).

    Article  PubMed  Google Scholar 

  137. Mullazehi, M., Mathsson, L., Lampa, J. & Ronnelid, J. High anti-collagen type-II antibody levels and induction of proinflammatory cytokines by anti-collagen antibody-containing immune complexes in vitro characterise a distinct rheumatoid arthritis phenotype associated with acute inflammation at the time of disease onset. Ann. Rheum. Dis. 66, 537–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Mullazehi, M., Mathsson, L., Lampa, J. & Ronnelid, J. Surface-bound anti-type II collagen-containing immune complexes induce production of tumor necrosis factor alpha, interleukin-1beta, and interleukin-8 from peripheral blood monocytes via Fc gamma receptor IIA: a potential pathophysiologic mechanism for humoral anti-type II collagen immunity in arthritis. Arthritis Rheum. 54, 1759–1771 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Mullazehi, M., Wick, M. C., Klareskog, L., van Vollenhoven, R. & Ronnelid, J. Anti-type II collagen antibodies are associated with early radiographic destruction in rheumatoid arthritis. Arthritis Res. Ther. 14, R100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Nandakumar, K. S. et al. Arthritogenic antibodies specific for a major type II collagen triple-helical epitope bind and destabilize cartilage independent of inflammation. Arthritis Rheum. 58, 184–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Snir, O. et al. Multifunctional T cell reactivity to native and glycosylated type-II collagen in rheumatoid arthritis. Arthritis Rheum. 64, 2482–2488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Diaz de Stahl, T., Andren, M., Martinsson, P., Verbeek, J. S. & Kleinau, S. Expression of FcgammaRIII is required for development of collagen-induced arthritis. Eur. J. Immunol. 32, 2915–2922 (2002).

    Article  PubMed  Google Scholar 

  143. Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Kochi, Y. et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat. Genet. 37, 478–485 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cooper, D. L. et al. FcGRIIIa expression on monocytes in rheumatoid arthritis: role in immune-complex stimulated TNF production and non-response to methotrexate. PLoS ONE 7, e289018 (2012).

    Google Scholar 

  146. Robinson, J. I. et al. Dissection of the FCGR3A association with RA: increased association in men and with autoantibody positive disease. Ann. Rheum. Dis. 69, 1054–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Okroj, M., Heinegard, D., Holmdahl, R. & Blom, A. M. Rheumatoid arthritis and the complement system. Ann. Med. 39, 517–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Trouw, L. A. et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum. 60, 1923–1931 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Banda, N. K., Takahashi, K., Wood, A. K., Holers, V. M. & Arend, W. P. Pathogenic complement activation in collagen antibody-induced arthritis in mice requires amplification by the alternative pathway. J. Immunol. 179, 4101–4109 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Rigby, W. F. et al. Increased frequency of complement C4B deficiency in rheumatoid arthritis. Arthritis Rheum. 64, 1338–1344 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  151. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Firestein, G. S. et al. Synovial interleukin-1 receptor antagonist and interleukin-1 balance in rheumatoid arthritis. Arthritis Rheum. 37, 644–652 (1994).

    Article  CAS  PubMed  Google Scholar 

  153. Arend, W. P. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev. 13, 323–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Suwannalai, P. et al. Avidity maturation of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum. 64, 1323–1328 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Lebre, M. C. et al. Rheumatoid arthritis synovium contains two subsets of CD83-DC-LAMP- dendritic cells with distinct cytokine profiles. Am. J. Pathol. 172, 940–950 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357, 977–986 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Plenge, R. M. et al. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genomewide study. N. Engl. J. Med. 357, 1199–1209 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kurreeman, F. A. et al. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med. 4, e278 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Plenge, R. M. et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat. Genet. 39, 1477–1482 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Matmati, M. et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat. Genet. 43, 908–912 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Perkins, E. A. et al. Association of single-nucleotide polymorphisms in CCR6, TAGAP, and TNFAIP3 with rheumatoid arthritis in African Americans. Arthritis Rheum. 64, 1355–1358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kochi, Y. et al. A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat. Genet. 42, 515–519 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Sui, J. et al. NLRP1 gene polymorphism influences gene transcription and is a risk factor for rheumatoid arthritis in Han chinese. Arthritis Rheum. 64, 647–654 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Raychaudhuri, S. et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat. Genet. 40, 1216–1223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gregersen, P. K. et al. REL, encoding a member of the NF-κB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat. Genet. 41, 820–823 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Raychaudhuri, S. et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat. Genet. 41, 1313–1318 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Stahl, E. A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 42, 508–514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chung, Y. L., Lee, M. Y., Wang, A. J. & Yao, L. F. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol. Ther. 8, 707–717 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Nishida, K. et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum. 50, 3365–3376 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Joosten, L. A., Leoni, F., Meghji, S. & Mascagni, P. Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol. Med. 17, 391–396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Grabiec, A. M., Korchynskyi, O., Tak, P. P. & Reedquist, K. A. Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann. Rheum. Dis. 71, 424–431 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Richardson, B. et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33, 1665–1673 (1990).

    Article  CAS  PubMed  Google Scholar 

  173. Liu, C. C. et al. Global DNA methylation, DNMT1, and MBD2 in patients with rheumatoid arthritis. Immunol. Lett. 135, 96–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Neidhart, M. et al. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum. 43, 2634–2647 (2000).

    Article  CAS  PubMed  Google Scholar 

  175. Ali, M. et al. Overexpression of transcripts containing LINE-1 in the synovia of patients with rheumatoid arthritis. Ann. Rheum. Dis. 62, 663–666 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Karouzakis, E., Gay, R. E., Michel, B. A., Gay, S. & Neidhart, M. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 60, 3613–3622 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Karouzakis, E. et al. DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes Immun. 12, 643–652 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. doi:10.1136/annrheumdis-2012-201526.

  179. Karouzakis, E., Gay, R. E., Gay, S. & Neidhart, M. Increased recycling of polyamines is associated with global DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 64, 1809–1817 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Nakasa, T. et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 58, 1284–1292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Nakamachi, Y. et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 60, 1294–1304 (2009).

    Article  PubMed  Google Scholar 

  182. Niederer, F. et al. Down-regulation of microRNA-34* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum. 64, 1771–1779 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors made substantial contributions to researching data for the article, discussions of content, writing the article and review and/or editing of the article before submission.

Corresponding author

Correspondence to William P. Arend.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arend, W., Firestein, G. Pre-rheumatoid arthritis: predisposition and transition to clinical synovitis. Nat Rev Rheumatol 8, 573–586 (2012). https://doi.org/10.1038/nrrheum.2012.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing