Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Psoriasis: what we have learned from mouse models

Abstract

Psoriasis is a common inflammatory skin disease of unknown etiology, for which there is no cure. This heterogeneous, cutaneous, inflammatory disorder is clinically characterized by prominent epidermal hyperplasia and a distinct inflammatory infiltrate. Crosstalk between immunocytes and keratinocytes, which results in the production of cytokines, chemokines and growth factors, is thought to mediate the disease. Given that psoriasis is only observed in humans, numerous genetic approaches to model the disease in mice have been undertaken. In this Review, we describe and critically assess the mouse models and transplantation experiments that have contributed to the discovery of novel disease-relevant pathways in psoriasis. Research performed using improved mouse models, combined with studies employing human cells, xenografts and patient material, will be key to our understanding of why such distinctive patterns of inflammation develop in patients with psoriasis. Indeed, a combination of genetic and immunological investigations will be necessary to develop both improved drugs for the treatment of psoriasis and novel curative strategies.

Key Points

  • Psoriasis is a common inflammatory skin disease that is genetically heterogeneous and for which there is currently no cure

  • Mouse models do not reproduce all aspects of psoriasis, but are nevertheless important tools to dissect the molecular and cellular events underlying the pathophysiology of the disease

  • Increased understanding of the complexity of psoriasis could be achieved by the development of improved mouse models and xenotransplantation studies involving cell transfer and tissue grafts

  • Novel strategies to treat psoriasis are likely to derive from the identification of new targets and the use of mouse models for drug testing

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human and mouse skin features.
Figure 2: Cells and molecules in the pathogenesis of psoriasis.

Similar content being viewed by others

References

  1. Farber, E. M. & Nall, L. In Psoriasis 3rd edn (eds Roenigk, H. H. Jr & Maibach, H. I.) 107–157 (Marcel Dekker, Inc., New York, 1998).

    Google Scholar 

  2. Gudjonsson, J. E. & Elder, J. T. In Fitzpatrick's Dermatology in General Medicine 7th edn (eds Wolff, K. et al.) 169–193 (McGraw-Hill, New York, 2008).

    Google Scholar 

  3. Griffiths, C. E. & Barker, J. N. Pathogenesis and clinical features of psoriasis. Lancet 370, 263–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Weiss, G., Shemer, A. & Trau, H. The Koebner phenomenon: review of the literature. J. Eur. Acad. Dermatol. Venereol. 16, 241–248 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Blumberg, B. S., Bunim, J. J., Calkins, E., Pirani, C. L. & Zvaifler, N. J. Ara nomenclature and classification of arthritis and rheumatism (tentative). Arthritis Rheum. 7, 93–97 (1964).

    Article  CAS  PubMed  Google Scholar 

  6. Winchester, R. In Fitzpatrick's Dermatology in General Medicine 7th edn (eds Wolff, K. et al.) 194–207 (McGraw-Hill, New York, 2008).

    Google Scholar 

  7. Ibrahim, G., Waxman, R. & Helliwell, P. S. The prevalence of psoriatic arthritis in people with psoriasis. Arthritis Rheum. 61, 1373–1378 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. McGonagle, D. Enthesitis: an autoinflammatory lesion linking nail and joint involvement in psoriatic disease. J. Eur. Acad. Dermatol. Venereol. 23 (Suppl. 1), 9–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Bovenschen, H. J., Seyger, M. M. & Van de Kerkhof, P. C. Plaque psoriasis vs. atopic dermatitis and lichen planus: a comparison for lesional T-cell subsets, epidermal proliferation and differentiation. Br. J. Dermatol. 153, 72–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Clark, R. A. Skin-resident T cells: the ups and downs of on site immunity. J. Invest. Dermatol. 130, 362–370 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Capon, F., Trembath, R. C. & Barker, J. N. An update on the genetics of psoriasis. Dermatol. Clin. 22, 339–347, vii (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Duffin, K. C. & Krueger, G. G. Genetic variations in cytokines and cytokine receptors associated with psoriasis found by genome-wide association. J. Invest. Dermatol. 129, 827–833 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Gudjonsson, J. E. et al. Psoriasis patients who are homozygous for the HLA-Cw*0602 allele have a 2.5-fold increased risk of developing psoriasis compared with Cw6 heterozygotes. Br. J. Dermatol. 148, 233–235 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Nair, R. P. et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 78, 827–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nair, R. P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat. Genet. 41, 199–204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Guzman Strong, C. et al. A milieu of regulatory elements in the epidermal differentiation complex syntenic block: implications for atopic dermatitis and psoriasis. Hum. Mol. Genet. 19, 1453–1460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Cid, R. et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat. Genet. 41, 211–215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Menter, A. The status of biologic therapies in the treatment of moderate to severe psoriasis. Cutis 84 (Suppl. 4), 14–24 (2009).

    PubMed  Google Scholar 

  19. Menter, A. et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J. Am. Acad. Dermatol. 58, 826–850 (2008).

    Article  PubMed  Google Scholar 

  20. A study in patients with moderate to severe psoriasis. ClinicalTrials.gov identifier: NCT01107457 [online], (2010).

  21. Assessment of long-term infliximab for psoriasis (study P05319) (REALITY). ClinicalTrials.gov identifier: NCT00779675 [online], (2010).

  22. Lowes, M. A., Bowcock, A. M. & Krueger, J. G. Pathogenesis and therapy of psoriasis. Nature 445, 866–873 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Berking, C. et al. Photocarcinogenesis in human adult skin grafts. Carcinogenesis 23, 181–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Jameson, J. M., Sharp, L. L., Witherden, D. A. & Havran, W. L. Regulation of skin cell homeostasis by gamma delta T cells. Front. Biosci. 9, 2640–2651 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Khavari, P. A. Modelling cancer in human skin tissue. Nat. Rev. Cancer 6, 270–280 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Schön, M. P., Blume-Peytavi, U., Schön, M. & Orfanos, C. E. The human hair follicle: glycoprotein-related antigenic profile of distinct keratinocyte populations in vivo and their alterations in vitro. Arch. Dermatol. Res. 287, 591–598 (1995).

    Article  PubMed  Google Scholar 

  27. Nestle, F. O., Di Meglio, P., Qin, J. Z. & Nickoloff, B. J. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9, 679–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blanpain, C. & Fuchs, E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10, 207–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Watt, F. M., Lo Celso, C. & Silva-Vargas, V. Epidermal stem cells: an update. Curr. Opin. Genet. Dev. 16, 518–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Gudjonsson, J. E., Johnston, A., Dyson, M., Valdimarsson, H. & Elder, J. T. Mouse models of psoriasis. J. Invest. Dermatol. 127, 1292–1308 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Richardson, S. K. & Gelfand, J. M. Update on the natural history and systemic treatment of psoriasis. Adv. Dermatol. 24, 171–196 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Johnson-Huang, L. M., McNutt, N. S., Krueger, J. G. & Lowes, M. A. Cytokine-producing dendritic cells in the pathogenesis of inflammatory skin diseases. J. Clin. Immunol. 29, 247–256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zaba, L. C., Krueger, J. G. & Lowes, M. A. Resident and “inflammatory” dendritic cells in human skin. J. Invest. Dermatol. 129, 302–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Ghoreschi, K., Weigert, C. & Röcken, M. Immunopathogenesis and role of T cells in psoriasis. Clin. Dermatol. 25, 574–580 (2007).

    Article  PubMed  Google Scholar 

  35. Di Cesare, A., Di Meglio, P. & Nestle, F. O. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J. Invest. Dermatol. 129, 1339–1350 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Conrad, C. et al. Alpha1beta1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat. Med. 13, 836–842 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Plant, D., Young, H. S., Watson, R. E., Worthington, J. & Griffiths, C. E. The CX3CL1-CX3CR1 system and psoriasis. Exp. Dermatol. 15, 900–903 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Sabat, R. et al. Immunopathogenesis of psoriasis. Exp. Dermatol. 16, 779–798 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Nestle, F. O., Kaplan, D. H. & Barker, J. Psoriasis. N. Engl. J. Med. 361, 496–509 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Conrad, C. & Nestle, F. O. Animal models of psoriasis and psoriatic arthritis: an update. Curr. Rheumatol. Rep. 8, 342–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Schön, M. P. Animal models of psoriasis—what can we learn from them? J. Invest. Dermatol. 112, 405–410 (1999).

    Article  PubMed  Google Scholar 

  42. Brown, W. R. & Hardy, M. H. A hypothesis on the cause of chronic epidermal hyperproliferation in asebia mice. Clin. Exp. Dermatol. 13, 74–77 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. HogenEsch, H. et al. A spontaneous mutation characterized by chronic proliferative dermatitis in C57BL mice. Am. J. Pathol. 143, 972–982 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sundberg, J. P. et al. Development and progression of psoriasiform dermatitis and systemic lesions in the flaky skin (fsn) mouse mutant. Pathobiology 65, 271–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Gijbels, M. J. et al. Therapeutic interventions in mice with chronic proliferative dermatitis (cpdm/cpdm). Exp. Dermatol. 9, 351–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Peters, T. et al. CD18 in monogenic and polygenic inflammatory processes of the skin. J. Investig. Dermatol. Symp. Proc. 11, 7–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Bullard, D. C. et al. A polygenic mouse model of psoriasiform skin disease in CD18-deficient mice. Proc. Natl Acad. Sci. USA 93, 2116–2121 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Sano, S. et al. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat. Med. 11, 43–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Song, J. I. & Grandis, J. R. STAT signaling in head and neck cancer. Oncogene 19, 2489–2495 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Bartoli, M. et al. VEGF differentially activates STAT3 in microvascular endothelial cells. FASEB J. 17, 1562–1564 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Detmar, M. et al. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J. Exp. Med. 180, 1141–1146 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Schonthaler, H. B., Huggenberger, R., Wculek, S. K., Detmar, M. & Wagner, E. F. Systemic anti-VEGF treatment strongly reduces skin inflammation in a mouse model of psoriasis. Proc. Natl Acad. Sci. USA 106, 21264–21269 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Doi, H., Shibata, M. A., Kiyokane, K. & Otsuki, Y. Downregulation of TGFbeta isoforms and their receptors contributes to keratinocyte hyperproliferation in psoriasis vulgaris. J. Dermatol. Sci. 33, 7–16 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Elder, J. T. et al. Overexpression of transforming growth factor alpha in psoriatic epidermis. Science 243, 811–814 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Kane, C. J., Knapp, A. M., Mansbridge, J. N. & Hanawalt, P. C. Transforming growth factor-beta 1 localization in normal and psoriatic epidermal keratinocytes in situ. J. Cell. Physiol. 144, 144–150 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Cui, W. et al. Concerted action of TGF-beta 1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev. 9, 945–955 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Fowlis, D. J., Cui, W., Johnson, S. A., Balmain, A. & Akhurst, R. J. Altered epidermal cell growth control in vivo by inducible expression of transforming growth factor beta 1 in the skin of transgenic mice. Cell Growth Differ. 7, 679–687 (1996).

    CAS  PubMed  Google Scholar 

  58. Li, A. G., Wang, D., Feng, X. H. & Wang, X. J. Latent TGFbeta1 overexpression in keratinocytes results in a severe psoriasis-like skin disorder. EMBO J. 23, 1770–1781 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, X. et al. Conditional epidermal expression of TGFbeta 1 blocks neonatal lethality but causes a reversible hyperplasia and alopecia. Proc. Natl Acad. Sci. USA 98, 9139–9144 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Sellheyer, K. et al. Inhibition of skin development by overexpression of transforming growth factor beta 1 in the epidermis of transgenic mice. Proc. Natl Acad. Sci. USA 90, 5237–5241 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, X. J., Liefer, K. M., Tsai, S., O'Malley, B. W. & Roop, D. R. Development of gene-switch transgenic mice that inducibly express transforming growth factor beta1 in the epidermis. Proc. Natl Acad. Sci. USA 96, 8483–8488 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Wippel-Slupetzky, K. & Stingl, G. Future perspectives in the treatment of psoriasis. Curr. Probl. Dermatol. 38, 172–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Cheng, J. et al. Cachexia and graft-vs.-host-disease-type skin changes in keratin promoter-driven TNF alpha transgenic mice. Genes Dev. 6, 1444–1456 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Westergaard, M. et al. Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin. J. Invest. Dermatol. 121, 1104–1117 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Romanowska, M., Reilly, L., Palmer, C. N., Gustafsson, M. C. & Foerster, J. Activation of PPARbeta/delta causes a psoriasis-like skin disease in vivo. PLoS ONE 5, e9701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. A study of the safety and efficacy of CNTO 1275 in patients with severe plaque-type psoriasis. ClinicalTrials.gov identifier: NCT00267969 [online], (2010).

  67. A study of the safety and efficacy of CNTO 1275 in subjects with moderate to severe psoriasis. ClinicalTrials.gov identifier: NCT00307437 [online], (2010).

  68. A verification study of CNTO 1275 in patients with plaque psoriasis. ClinicalTrials.gov identifier: NCT00723528 [online], (2010).

  69. Kopp, T. et al. Inflammatory skin disease in K14/p40 transgenic mice: evidence for interleukin-12-like activities of p40. J. Invest. Dermatol. 117, 618–626 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Tarutani, M. et al. Neutrophil-dominant psoriasis-like skin inflammation induced by epidermal-specific expression of Raf in mice. J. Dermatol. Sci. 58, 28–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Mee, J. B., Antonopoulos, C., Poole, S., Kupper, T. S. & Groves, R. W. Counter-regulation of interleukin-1alpha (IL-1alpha) and IL-1 receptor antagonist in murine keratinocytes. J. Invest. Dermatol. 124, 1267–1274 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Mee, J. B., Cork, M. J., di Giovine, F. S., Duff, G. W. & Groves, R. W. Interleukin-1: a key inflammatory mediator in psoriasis? Cytokine 33, 72–78 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Cooper, K. D. et al. IL-1 activity is reduced in psoriatic skin. Decreased IL-1 alpha and increased nonfunctional IL-1 beta. J. Immunol. 144, 4593–4603 (1990).

    CAS  PubMed  Google Scholar 

  74. Shepherd, J., Little, M. C. & Nicklin, M. J. Psoriasis-like cutaneous inflammation in mice lacking interleukin-1 receptor antagonist. J. Invest. Dermatol. 122, 665–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Stratis, A. et al. Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J. Clin. Invest. 116, 2094–2104 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koegel, H. et al. Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice. J. Clin. Invest. 119, 899–910 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mehic, D., Bakiri, L., Ghannadan, M., Wagner, E. F. & Tschachler, E. Fos and jun proteins are specifically expressed during differentiation of human keratinocytes. J. Invest. Dermatol. 124, 212–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Meixner, A. et al. Epidermal JunB represses G-CSF transcription and affects haematopoiesis and bone formation. Nat. Cell Biol. 10, 1003–1011 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Guinea-Viniegra, J. et al. TNFalpha shedding and epidermal inflammation are controlled by Jun proteins. Genes Dev. 23, 2663–2674 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zenz, R. et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437, 369–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Zenz, R. et al. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res. Ther. 10, 201 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zheng, Y. et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Chan, J. R. et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med. 203, 2577–2587 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Caruso, R. et al. Involvement of interleukin-21 in the epidermal hyperplasia of psoriasis. Nat. Med. 15, 1013–1015 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. van der Fits, L. et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Schön, M. P., Detmar, M. & Parker, C. M. Murine psoriasis-like disorder induced by naive CD4+ T cells. Nat. Med. 3, 183–188 (1997).

    Article  PubMed  Google Scholar 

  88. Leon, F. et al. Antibodies to complement receptor 3 treat established inflammation in murine models of colitis and a novel model of psoriasiform dermatitis. J. Immunol. 177, 6974–6982 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Boyman, O. et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J. Exp. Med. 199, 731–736 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chang, B. Y. et al. JAK3 inhibition significantly attenuates psoriasiform skin inflammation in CD18 mutant PL/J mice. J. Immunol. 183, 2183–2192 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Skvara, H. et al. The PKC inhibitor AEB071 may be a therapeutic option for psoriasis. J. Clin. Invest. 118, 3151–3159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sonkoly, E. et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS ONE 2, e610 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zibert, J. R. et al. MicroRNAs and potential target interactions in psoriasis. J. Dermatol. Sci. 58, 177–185 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, X. J. et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat. Genet. 41, 205–210 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, Y. et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 4, e1000041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Capon, F. et al. Identification of ZNF313/RNF114 as a novel psoriasis susceptibility gene. Hum. Mol. Genet. 17, 1938–1945 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Voskas, D. et al. A cyclosporine-sensitive psoriasis-like disease produced in Tie2 transgenic mice. Am. J. Pathol. 166, 843–855 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vassar, R. & Fuchs, E. Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentiation. Genes Dev. 5, 714–727 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Ishihara, K. & Hirano, T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 13, 357–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Guo, L., Yu, Q. C. & Fuchs, E. Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. EMBO J. 12, 973–986 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Groves, R. W., Mizutani, H., Kieffer, J. D. & Kupper, T. S. Inflammatory skin disease in transgenic mice that express high levels of interleukin 1 alpha in basal epidermis. Proc. Natl Acad. Sci. USA 92, 11874–11878 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Blumberg, H. et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104, 9–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Xia, Y. P. et al. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood 102, 161–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Cook, P. W., Brown, J. R., Cornell, K. A. & Pittelkow, M. R. Suprabasal expression of human amphiregulin in the epidermis of transgenic mice induces a severe, early-onset, psoriasis-like skin pathology: expression of amphiregulin in the basal epidermis is also associated with synovitis. Exp. Dermatol. 13, 347–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Blessing, M., Schirmacher, P. & Kaiser, S. Overexpression of bone morphogenetic protein-6 (BMP-6) in the epidermis of transgenic mice: inhibition or stimulation of proliferation depending on the pattern of transgene expression and formation of psoriatic lesions. J. Cell. Biol. 135, 227–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Carroll, J. M., Romero, M. R. & Watt, F. M. Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell 83, 957–968 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Cook, P. W. et al. Transgenic expression of the human amphiregulin gene induces a psoriasis-like phenotype. J. Clin. Invest. 100, 2286–2294 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Carroll, J. M., Crompton, T., Seery, J. P. & Watt, F. M. Transgenic mice expressing IFN-gamma in the epidermis have eczema, hair hypopigmentation, and hair loss. J. Invest. Dermatol. 108, 412–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Hobbs, R. M., Silva-Vargas, V., Groves, R. & Watt, F. M. Expression of activated MEK1 in differentiating epidermal cells is sufficient to generate hyperproliferative and inflammatory skin lesions. J. Invest. Dermatol. 123, 503–515 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Hida, S. et al. CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling. Immunity 13, 643–655 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Schön, M. P., Schön, M., Warren, H. B., Donohue, J. P. & Parker, C. M. Cutaneous inflammatory disorder in integrin alphaE (CD103)-deficient mice. J. Immunol. 165, 6583–6589 (2000).

    Article  PubMed  Google Scholar 

  112. Rebholz, B. et al. Crosstalk between keratinocytes and adaptive immune cells in an IkappaBalpha protein-mediated inflammatory disease of the skin. Immunity 27, 296–307 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to T. Luger and P. Lipsky for critically reading the manuscript and providing valuable suggestions. This work was supported by the European Research Council Advanced Grant (ERC FCK/2008/37) and the Banco Bilbao Vizcaya Argentaria (BBVA) Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in researching data for the article, discussion of the content, writing the article, and both reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Erwin F. Wagner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, E., Schonthaler, H., Guinea-Viniegra, J. et al. Psoriasis: what we have learned from mouse models. Nat Rev Rheumatol 6, 704–714 (2010). https://doi.org/10.1038/nrrheum.2010.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.157

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research