Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rheumatoid cachexia and cardiovascular disease

Abstract

Both cachexia and cardiovascular disease are strongly associated with rheumatoid arthritis (RA) and linked to the chronic inflammatory process. Typically, rheumatoid cachexia occurs in individuals with normal or increased BMI (reduced muscle mass and increased fat mass). Classic cachexia (reduced muscle mass and reduced fat mass) is rare in RA but is associated with high inflammatory activity and aggressive joint destruction in patients with a poor cardiovascular prognosis. Conversely, obesity is linked to hypertension and dyslipidemia but, paradoxically, lower RA disease activity and less cardiovascular disease-related mortality. Rheumatoid cachexia might represent the 'worst of both worlds' with respect to cardiovascular outcome, but until diagnostic criteria for this condition are agreed upon, its effect on cardiovascular disease risk remains controversial.

Key Points

  • Two forms of cachexia occur in rheumatoid arthritis (RA): rheumatoid cachexia with normal BMI (low muscle mass and increased fat mass) and classic cachexia with low BMI (low muscle mass and low fat mass)

  • Classic cachexia is rarely seen in RA but is associated with severe systemic inflammation, increased cardiovascular disease (CVD) risk and poor RA outcome

  • Within the RA population, increasing fat mass is linked to increasing prevalence of traditional CVD risk factors but, paradoxically, less-severe joint destruction and lower CVD-related mortality

  • Rheumatoid cachexia has features of both classic cachexia and obesity and might represent the 'worst of both worlds' with respect to cardiovascular outcomes but current data is inconclusive

  • There is a lack of agreed diagnostic criteria for rheumatoid cachexia and this hampers research into the prevalence and importance of this condition

  • Treatment with methotrexate or tumor necrosis factor inhibitors has not yet been shown to reverse rheumatoid cachexia, although exercise therapy is likely to be beneficial

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of current knowledge regarding the underlying mechanisms and clinical manifestations of rheumatoid cachexia.

References

  1. Pincus, T., Sokka, T., & Wolfe, F. Premature mortality in patients with rheumatoid arthritis: evolving concepts. Arthritis Rheum. 44, 1234–1236 (2001).

    Article  CAS  Google Scholar 

  2. Gonzalez, A. et al. Mortality trends in rheumatoid arthritis: the role of rheumatoid factor. J. Rheumatol. 35, 1009–1014 (2008).

    Article  Google Scholar 

  3. Kitas, G. D. & Erb, N. Tackling ischaemic heart disease in rheumatoid arthritis. Rheumatology (Oxford) 42, 607–613 (2003).

    Article  CAS  Google Scholar 

  4. Solomon, D. H. et al. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation 107, 1303–1307 (2003).

    Article  Google Scholar 

  5. Bacon, P. A., Stevens, R. J., Carruthers, D. M., Young, S. P. & Kitas, G. D. Accelerated atherogenesis in autoimmune rheumatic diseases. Autoimmun. Rev. 1, 338–347 (2002).

    Article  CAS  Google Scholar 

  6. Douglas, K. M. et al. Excess recurrent cardiac events in rheumatoid arthritis patients with acute coronary syndrome. Ann. Rheum. Dis. 65, 348–353 (2006).

    Article  CAS  Google Scholar 

  7. Panoulas, V. F. et al. Prevalence and associations of hypertension and its control in patients with rheumatoid arthritis. Rheumatology (Oxford) 46, 1477–1482 (2007).

    Article  CAS  Google Scholar 

  8. Panoulas, V. F. et al. Hypertension in rheumatoid arthritis. Rheumatology (Oxford) 47, 1286–1298 (2008).

    Article  CAS  Google Scholar 

  9. Stavropoulos-Kalinoglou, A. et al. Associations of obesity with modifiable risk factors for the development of cardiovascular disease in patients with rheumatoid arthritis. Ann. Rheum. Dis. 68, 242–245 (2009).

    Article  CAS  Google Scholar 

  10. Metsios, G. S. et al. Association of physical inactivity with increased cardiovascular risk in patients with rheumatoid arthritis. Eur. J. Cardiovasc. Prev. Rehabil. 16, 188–194 (2009).

    Article  Google Scholar 

  11. del Rincón, I., Freeman, G. L., Haas, R. W., O'Leary, D. H. & Escalante, A. Relative contribution of cardiovascular risk factors and rheumatoid arthritis clinical manifestations to atherosclerosis. Arthritis Rheum. 52, 3413–3423 (2005).

    Article  Google Scholar 

  12. Sattar, N., McCarey, D. W., Capell, H. & McInnes, I. B. Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108, 2957–2963 (2003).

    Article  Google Scholar 

  13. Stevens, R. J., Douglas, K. M., Saratzis, A. N. & Kitas, G. D. Inflammation and atherosclerosis in rheumatoid arthritis. Expert Rev. Mol. Med. 7, 1–24 (2005).

    Article  Google Scholar 

  14. Metsios, G. S. et al. Vascular function and inflammation in rheumatoid arthritis: the role of physical activity. Open Cardiovasc. Med. J. 23, 89–96 (2010).

    Google Scholar 

  15. Metsios, G. S. et al. New resting energy expenditure prediction equations for patients with rheumatoid arthritis. Rheumatology (Oxford) 47, 500–506 (2008).

    Article  CAS  Google Scholar 

  16. Metsios, G. S., Stavropoulos-Kalinoglou, A., Koutedakis, Y. & Kitas, G. D. Rheumatoid cachexia: causes, significance and possible interventions. Hosp. Chronicles 1, 20–26 (2006).

    Google Scholar 

  17. Roubenoff, R. et al. Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J. Clin. Invest. 93, 2379–2386 (1994).

    Article  CAS  Google Scholar 

  18. Evans, W. J. et al. Cachexia: a new definition. Clin. Nutr. 27, 793–799 (2008).

    Article  CAS  Google Scholar 

  19. Summers, G. D., Deighton, C. M., Rennie, M. J. & Booth, A. H. Rheumatoid cachexia: a clinical perspective. Rheumatology (Oxford) 47, 1124–1131 (2008).

    Article  CAS  Google Scholar 

  20. Kremers, H. M., Nicola, P. J., Crowson, C. S., Ballman, K. V. & Gabriel, S. E. Prognostic importance of low body mass index in relation to cardiovascular mortality in rheumatoid arthritis. Arthritis Rheum. 50, 3450–3457 (2004).

    Article  Google Scholar 

  21. Morley, J. E., Thomas, D. R. & Wilson, M. M. Cachexia: pathophysiology and clinical relevance. Am. J. Clin. Nutr. 83, 735–743 (2006).

    Article  CAS  Google Scholar 

  22. Elkan, A. C., Engvall, I. L., Cederholm, T. & Hafström, I. Rheumatoid cachexia, central obesity and malnutrition in patients with low-active rheumatoid arthritis: feasibility of anthropometry, Mini Nutritional Assessment and body composition techniques. Eur. J. Nutr. 48, 315–322 (2009).

    Article  CAS  Google Scholar 

  23. Engvall, I. L. et al. Cachexia in rheumatoid arthritis is associated with inflammatory activity, physical disability, and low bioavailable insulin-like growth factor. Scand. J. Rheumatol. 37, 321–328 (2008).

    Article  CAS  Google Scholar 

  24. Elkan, A. C., Håkansson, N., Frostegård, J., Cederholm, T. & Hafström, I. Rheumatoid cachexia is associated with dyslipidemia and low levels of atheroprotective natural antibodies against phosphorylcholine but not with dietary fat in patients with rheumatoid arthritis: a cross-sectional study. Arthritis Res. Ther. 11, R37 (2009).

    Article  Google Scholar 

  25. Morgan, S. L. et al. Nutrient intake patterns, body mass index, and vitamin levels in patients with rheumatoid arthritis. Arthritis Care Res. 10, 9–17 (1997).

    Article  CAS  Google Scholar 

  26. Munro, R. & Capell, H. Prevalence of low body mass in rheumatoid arthritis: association with the acute phase response. Ann. Rheum. Dis. 56, 326–329 (1997).

    Article  CAS  Google Scholar 

  27. Escalante, A., Haas, R. W. & del Rincón, I. Paradoxical effect of body mass index on survival in rheumatoid arthritis: role of comorbidity and systemic inflammation. Arch. Intern. Med. 165, 1624–1629 (2005).

    Article  Google Scholar 

  28. Westhoff, G., Rau, R. & Zink, A. Radiographic joint damage in early rheumatoid arthritis is highly dependent on body mass index. Arthritis Rheum. 56, 3575–3582 (2007).

    Article  CAS  Google Scholar 

  29. Metsios, G. S. et al. Rheumatoid cachexia and cardiovascular disease. Clin. Exp. Rheumatol. 27, 985–988 (2009).

    CAS  PubMed  Google Scholar 

  30. Giles, J. T. et al. Abnormal body composition phenotypes in older rheumatoid arthritis patients: association with disease characteristics and pharmacotherapies. Arthritis Rheum. 59, 807–815 (2008).

    Article  Google Scholar 

  31. Mitch, W. E. & Goldberg, A. L. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N. Engl. J. Med. 335, 1897–1905 (1996).

    Article  CAS  Google Scholar 

  32. Li, Y. P. et al. TNF-alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J. 17, 1048–1057 (2003).

    Article  CAS  Google Scholar 

  33. Kotler, D. P. Cachexia. Ann. Intern. Med. 133, 622–634 (2000).

    Article  CAS  Google Scholar 

  34. Rennie, K. L., Hughes, J., Lang, R. & Jebb, S. A. Nutritional management of rheumatoid arthritis: a review of the evidence. J. Hum. Nutr. Diet 16, 97–109 (2003).

    Article  CAS  Google Scholar 

  35. Metsios, G. S. et al. Smoking significantly increases basal metabolic rate in patients with rheumatoid arthritis. Ann. Rheum. Dis. 67, 70–73 (2007).

    Article  Google Scholar 

  36. Stavropoulos-Kalinoglou, A. et al. Cigarette smoking associates with body weight and muscle mass of patients with rheumatoid arthritis: a cross-sectional, observational study. Arthritis Res. Ther. 10, R59 (2008).

    Article  Google Scholar 

  37. Tengstrand, B., Carlström, K. & Hafström, I. Gonadal hormones in men with rheumatoid arthritis--from onset through 2 years. J. Rheumatol. 36, 887–892 (2009).

    Article  CAS  Google Scholar 

  38. Straub, R. H. et al. Sex hormone concentrations in patients with rheumatoid arthritis are not normalized during 12 weeks of anti-tumor necrosis factor therapy. J. Rheumatol. 32, 1253–1258 (2005).

    CAS  PubMed  Google Scholar 

  39. Haren, M. T., Kim, M. J., Tariq, S. H., Wittert, G. A. & Morley, J. E. Andropause: a quality-of-life issue in older males. Med. Clin. North Am. 90, 1005–1023 (2006).

    Article  CAS  Google Scholar 

  40. Metsios, G. S. et al. Rheumatoid arthritis, cardiovascular disease and physical exercise: a systematic review. Rheumatology (Oxford) 47, 239–248 (2008).

    Article  CAS  Google Scholar 

  41. Munneke, M. et al. High intensity exercise or conventional exercise for patients with rheumatoid arthritis? Outcome expectations of patients, rheumatologists, and physiotherapists. Ann. Rheum. Dis. 63, 804–808 (2004).

    Article  CAS  Google Scholar 

  42. Stavropoulos-Kalinoglou, A. et al. Underweight and obese states both associate with worse disease activity and physical function in patients with established rheumatoid arthritis. Clin. Rheumatol. 28, 439–444 (2009).

    Article  Google Scholar 

  43. Kaufmann, J., Kielstein, V., Kilian, S., Stein, G. & Hein, G. Relation between body mass index and radiological progression in patients with rheumatoid arthritis. J. Rheumatol. 30, 2350–2355 (2003).

    PubMed  Google Scholar 

  44. Fleming, A., Crown, J. M. & Corbett, M. Prognostic value of early features in rheumatoid disease. Br. Med. J. 1, 1243–1245 (1976).

    Article  CAS  Google Scholar 

  45. Roubenoff, R. & Rall, L. C. Humoral mediation of changing body composition during aging and chronic inflammation. Nutr. Rev. 51, 1–11 (1993).

    Article  CAS  Google Scholar 

  46. Pierson, R. N. Jr. Body composition in aging: a biological perspective. Curr. Opin. Clin. Nutr. Metab. Care 6, 15–20 (2003).

    Article  Google Scholar 

  47. Navarro-Cano, G., Del Rincón, I., Pogosian, S., Roldán, J. F. & Escalante, A. Association of mortality with disease severity in rheumatoid arthritis, independent of comorbidity. Arthritis Rheum. 48, 2425–2433 (2003).

    Article  Google Scholar 

  48. Roubenoff, R., Roubenoff, R. A., Ward, L. M., Holland, S. M. & Hellmann, D. B. Rheumatoid cachexia: depletion of lean body mass in rheumatoid arthritis. Possible association with tumor necrosis factor. J. Rheumatol. 19, 1505–1510 (1992).

    CAS  PubMed  Google Scholar 

  49. Arshad, A., Rashid, R. & Benjamin, K. The effect of disease activity on fat-free mass and resting energy expenditure in patients with rheumatoid arthritis versus noninflammatory arthropathies/soft tissue rheumatism. Mod. Rheumatol. 17, 470–475 (2007).

    Article  Google Scholar 

  50. Hernandez-Beriain, J. A. et al. Undernutrition in rheumatoid arthritis patients with disability. Scand. J. Rheumatol. 25, 383–387 (1996).

    Article  CAS  Google Scholar 

  51. Florea, V. G. et al. Wasting of the left ventricle in patients with cardiac cachexia: a cardiovascular magnetic resonance study. Int. J. Cardiol. 97, 15–20 (2004).

    Article  Google Scholar 

  52. Stavropoulos-Kalinoglou, A. et al. Redefining overweight and obesity in rheumatoid arthritis patients. Ann. Rheum. Dis. 66, 1316–1321 (2007).

    Article  Google Scholar 

  53. Armstrong, D. J., McCausland, E. M., Quinn, A. D. & Wright, G. D. Obesity and cardiovascular risk factors in rheumatoid arthritis. Rheumatology (Oxford) 45, 782 (2006).

    Article  CAS  Google Scholar 

  54. Dessein, P. H., Norton, G. R., Woodiwiss, A. J., Joffe, B. I. & Solomon, A. Independent role of conventional cardiovascular risk factors as predictors of C-reactive protein concentrations in rheumatoid arthritis. J. Rheumatol. 34, 681–688 (2007).

    CAS  PubMed  Google Scholar 

  55. Goodson, N. J. et al. Baseline levels of C-reactive protein and prediction of death from cardiovascular disease in patients with inflammatory polyarthritis: a ten-year followup study of a primary care-based inception cohort. Arthritis Rheum. 52, 2293–2299 (2005).

    Article  CAS  Google Scholar 

  56. Naranjo, A. et al. Cardiovascular disease in patients with rheumatoid arthritis: results from the QUEST-RA study. Arthritis Res. Ther. 10, R30 (2008).

    Article  Google Scholar 

  57. van der Helm-van Mil, A. H., van der Kooij, S. M., Allaart, C. F., Toes, R. E. & Huizinga, T. W. A high body mass index has a protective effect on the amount of joint destruction in small joints in early rheumatoid arthritis. Ann. Rheum. Dis. 67, 769–774 (2008).

    Article  CAS  Google Scholar 

  58. Rimm, E. B. et al. Body size and fat distribution as predictors of coronary heart disease among middle-aged and older US men. Am. J. Epidemiol. 141, 1117–1127 (1995).

    Article  CAS  Google Scholar 

  59. DeNino, W. F. et al. Contribution of abdominal adiposity to age-related differences in insulin sensitivity and plasma lipids in healthy nonobese women. Diabetes Care 24, 925–932 (2001).

    Article  CAS  Google Scholar 

  60. Dessein, P. H., Joffe, B. I. & Stanwix, A. E. Inflammation, insulin resistance, and aberrant lipid metabolism as cardiovascular risk factors in rheumatoid arthritis. J. Rheumatol. 30, 1403–1405 (2003).

    PubMed  Google Scholar 

  61. Inaba, M. et al. Independent association of increased trunk fat with increased arterial stiffening in postmenopausal patients with rheumatoid arthritis. J. Rheumatol. 34, 290–295 (2007).

    PubMed  Google Scholar 

  62. Westhovens, R., Nijs, J., Taelman, V. & Dequeker, J. Body composition in rheumatoid arthritis. Br. J. Rheumatol. 36, 444–448 (1997).

    Article  CAS  Google Scholar 

  63. Otero, M. et al. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann. Rheum. Dis. 65, 1198–1201 (2006).

    Article  CAS  Google Scholar 

  64. Gonzalez-Gay, M. A. et al. High-grade inflammation, circulating adiponectin concentrations and cardiovascular risk factors in severe rheumatoid arthritis. Clin. Exp. Rheumatol. 26, 596–603 (2008).

    CAS  PubMed  Google Scholar 

  65. Marcora, S. M., Chester, K. R., Mittal, G., Lemmey, A. B. & Maddison, P. J. Randomized phase 2 trial of anti-tumor necrosis factor therapy for cachexia in patients with early rheumatoid arthritis. Am. J. Clin. Nutr. 84, 1463–1472 (2006).

    Article  CAS  Google Scholar 

  66. Metsios, G. S. et al. Blockade of tumour necrosis factor-alpha in rheumatoid arthritis: effects on components of rheumatoid cachexia. Rheumatology (Oxford) 46, 1824–1827 (2007).

    Article  CAS  Google Scholar 

  67. Nishida, K., Okada, Y., Nawata, M., Saito, K. & Tanaka, Y. Induction of hyperadiponectinemia following long-term treatment of patients with rheumatoid arthritis with infliximab (IFX), an anti-TNF-alpha antibody. Endocr. J. 55, 213–216 (2008).

    Article  CAS  Google Scholar 

  68. Nagashima, T. et al. Increase in plasma levels of adiponectin after administration of anti-tumor necrosis factor agents in patients with rheumatoid arthritis. J. Rheumatol. 35, 936–938 (2008).

    CAS  PubMed  Google Scholar 

  69. Komai, N., Morita, Y., Sakuta, T., Kuwabara, A. & Kashihara, N. Anti-tumor necrosis factor therapy increases serum adiponectin levels with the improvement of endothelial dysfunction in patients with rheumatoid arthritis. Mod. Rheumatol. 17, 385–390 (2007).

    Article  CAS  Google Scholar 

  70. Härle, P., Sarzi-Puttini, P., Cutolo, M. & Straub, R. H. No change of serum levels of leptin and adiponectin during anti-tumour necrosis factor antibody treatment with adalimumab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 65, 970–971 (2006).

    Article  Google Scholar 

  71. Gonzalez-Gay, M. A. et al. Anti-TNF-alpha therapy does not modulate leptin in patients with severe rheumatoid arthritis. Clin. Exp. Rheumatol. 27, 222–228 (2009).

    CAS  PubMed  Google Scholar 

  72. Rosenvinge, A., Krogh-Madsen, R., Baslund, B. & Pedersen, B. K. Insulin resistance in patients with rheumatoid arthritis: effect of anti-TNFalpha therapy. Scand. J. Rheumatol. 36, 91–96 (2007).

    Article  CAS  Google Scholar 

  73. Kiortsis, D. N., Mavridis, A. K., Vasakos, S., Nikas, S. N. & Drosos, A. A. Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis. Ann. Rheum. Dis. 64, 765–766 (2005).

    Article  CAS  Google Scholar 

  74. Morley, J. E. Weight loss in older persons: new therapeutic approaches. Curr. Pharm. Des. 13, 3637–3647 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Summers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summers, G., Metsios, G., Stavropoulos-Kalinoglou, A. et al. Rheumatoid cachexia and cardiovascular disease. Nat Rev Rheumatol 6, 445–451 (2010). https://doi.org/10.1038/nrrheum.2010.105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing