Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of glucocorticoid-induced osteoporosis

Abstract

Glucocorticoid-induced osteoporosis is a common condition that results in significant morbidity and mortality. The skeletal effects of glucocorticoids include both direct and indirect actions on bone that result in an early, transient increase in bone resorption accompanied by a decrease in bone formation, which is maintained for the duration of glucocorticoid therapy. Rapid bone loss and increased fracture risk occur soon after the initiation of glucocorticoid therapy and are dose dependent. The increase in fracture risk is partly independent of bone mineral density, probably as a result of changes in bone material properties and an increased risk of falling. Bisphosphonates are the front-line choice for prevention of fracture in glucocorticoid-treated patients, with teriparatide as the second-line option; calcium and vitamin D supplements should be co-prescribed in the majority of individuals. Future guidelines for the management of glucocorticoid-induced osteoporosis should recognize the limitations of FRAX® in assessing fracture risk in glucocorticoid-treated patients, and should include recently approved interventions, such as zoledronate and teriparatide.

Key Points

  • Glucocorticoid therapy is a common cause of osteoporosis, but remains under-recognized and under-treated

  • Direct effects of glucocorticoids on bone include an early, transient increase in bone resorption and long-term suppression of bone formation at the tissue and cellular levels

  • Rapid bone loss and increased fracture risk occur early in the course of glucocorticoid therapy, emphasizing the importance of primary prevention in those at high risk of fracture

  • Use of the FRAX® fracture risk assessment tool will often underestimate fracture probability in glucocorticoid-treated individuals

  • Bisphosphonates are the first-line treatment option for the prevention of fracture in patients receiving glucocorticoids

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct effects of glucocorticoids on bone.

Similar content being viewed by others

References

  1. Compston, J. E. Emerging consensus on prevention and treatment of glucocorticoid-induced osteoporosis. Curr. Rheumatol. Rep. 9, 78–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Curtis, J. R. et al. Longitudinal patterns in the prevention of osteoporosis in glucocorticoid-treated patients. Arthritis Rheum. 52, 2485–2494 (2005).

    Article  PubMed  Google Scholar 

  3. Feldstein, A. C., Elmer, P. J., Nichols, G. A. & Herson, M. Practice patterns in patients at risk for glucocorticoid-induced osteoporosis. Osteoporos. Int. 16, 2168–2174 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Duyvendak, M., Naunton, M., Atthobari, J., van den Berg, P. B. & Brouwers, J. R. Corticosteroid-induced osteoporosis prevention: longitudinal practice patterns in The Netherlands 2001–2005. Osteoporos. Int. 18, 1429–1433 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Newman, E. D. et al. Glucocorticoid-Induced Osteoporosis Program (GIOP): a novel, comprehensive, and highly successful care program with improved outcomes at 1 year. Osteoporos. Int. 17, 1428–1434 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Blalock, S. J., Norton, L. L., Patel, R. A. & Dooley, M. A. Patient knowledge, beliefs, and behavior concerning the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheum. 53, 732–739 (2005).

    Article  PubMed  Google Scholar 

  7. van Staa, T. P. et al. Use of oral corticosteroids in the United Kingdom. QJM 93, 105–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. van Staa, T. P., Leufkens, H. G., Abenhaim, L., Zhang, B. & Cooper, C. Use of oral corticosteroids and risk of fractures. J. Bone Miner. Res. 15, 933–1000 (2000).

    Article  Google Scholar 

  9. De Vries, F. et al. Fracture risk with intermittent high-dose glucocorticoid therapy. Arthritis Rheum. 56, 208–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. van Staa, T. P., Leufkens, H. G., Abenhaim, L., Zhang, B. & Cooper, C. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology (Oxford) 39, 1383–1389 (2000).

    Article  CAS  Google Scholar 

  11. van Staa, T. P., Leufkens, H. G. & Cooper, C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos. Int. 13, 777–787 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Ip, M., Lam, K., Yam, L., Kung, A. & Ng, M. Decreased bone mineral density in premenopausal asthma patients receiving long-term inhaled steroids. Chest 105, 1722–1727 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Toogood, J. H. et al. Bone mineral density and the risk of fracture in patients receiving long-term inhaled steroid therapy for asthma. J. Allergy Clin. Immunol. 96, 157–166 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Wong, C. A. et al. Inhaled corticosteroid use and bone-mineral density in patients with asthma. Lancet 355, 1399–1403 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. van Staa, T. P., Leufkens, H. G. & Cooper, C. Use of inhaled corticosteroids and risk of fractures. J. Bone Miner. Res. 16, 581–588 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. van Staa, T. P., Bishop, N., Leufkens, H. G. & Cooper, C. Are inhaled corticosteroids associated with an increased risk of fracture in children? Osteoporos. Int. 15, 785–791 (2004).

    Article  PubMed  Google Scholar 

  17. Dalle Carbonare, L. et al. Comparison of trabecular bone microarchitecture and remodeling in glucocorticoid-induced and postmenopausal osteoporosis. J. Bone Miner. Res. 16, 97–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Chappard, D. et al. Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study. J. Bone Miner. Res. 11, 676–685 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Bressot, C. et al. Histomorphometric profile, pathophysiology and reversibility of corticosteroid induced osteoporosis. Metab. Bone Dis. Relat. Res. 1, 303–311 (1979).

    Article  Google Scholar 

  20. Dempster, D. W. Bone histomorphometry in glucocorticoid-induced osteoporosis. J. Bone Miner. Res. 4, 137–147 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Dempster, D. W., Arlot, M. A. & Meunier, P. J. Mean wall thickness and formation periods of trabecular bone packets in corticosteroid-induced osteoporosis. Calcif. Tissue Int. 35, 410–417 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Compston, J. et al. Recommendations for the registration of agents for prevention and treatment of glucocorticoid-induced osteoporosis: an update from the Group for the Respect of Ethics and Excellence in Science. Osteoporos. Int. 19, 1247–1250 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Rubin, J. et al. Dexamethasone promotes expression of membrane-bound macrophage colony-stimulating factor in murine osteoblast-like cells. Endocrinology 139, 1006–1012 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Hofbauer, L. C. et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140, 4382–4389 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Canalis, E. Mechanisms of glucocorticoid action in bone. Curr. Osteoporos. Rep. 3, 98–102 (2005).

    Article  PubMed  Google Scholar 

  26. Ohnaka, K., Tanabe, M., Kawate, H., Nawata, H. & Takayanagi, R. Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem. Biophys. Res. Commun. 329, 177–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Smith, E. & Frenkel, B. Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3β-dependent and -independent manner. J. Biol. Chem. 280, 2388–2394 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, Z., Bucher, N. L. & Farmer, S. R. Induction of peroxisome proliferator-activated receptor γ during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPβ, C/EBPδ, and glucocorticoids. Mol. Cell Biol. 16, 4128–4136 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weinstein, R. S., Jilka, R. L., Parfitt, A. M. & Manolagas, S. C. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J. Clin. Invest. 102, 274–282 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weinstein, R. S. Glucocorticoids, osteocytes and skeletal fragility: the role of bone vascularity. Bone doi:10.1016/j.bone.2009.06.030.

  31. Lane, N. E. et al. Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J. Bone Miner. Res. 21, 466–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Kanis, J. A. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359, 1929–1936 (2002).

    Article  PubMed  Google Scholar 

  33. University of Sheffield. FRAX®x2014;WHO Fracture Risk Assessment Tool [online]

  34. Kanis, J. A. et al. A meta-analysis of prior corticosteroid use and fracture risk. J. Bone Miner. Res. 19, 893–899 (2004).

    Article  PubMed  Google Scholar 

  35. Luengo, M. et al. Treatment of steroid-induced osteopenia with calcitonin in corticosteroid-dependent asthma. A one-year follow-up study. Am. Rev. Respir. Dis. 142, 104–107 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. van Staa, T. P. et al. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum. 48, 3224–3229 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Homik, J. et al. Bisphosphonates for steroid induced osteoporosis. Cochrane Database of Systematic Reviews 1999, Issue 1. Art. No.: CD001347.doi:10.1002/14651858.CD001347.

  38. Adachi, J. D. et al. Intermittent etidronate therapy to prevent corticosteroid-induced osteoporosis. N. Engl. J. Med. 337, 382–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Saag, K. G. et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N. Engl. J. Med. 339, 292–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Adachi, J. D. et al. Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum. 44, 202–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. De Nijs, R. N. et al. Alendronate or alfacalcidol in glucocorticoid-induced osteoporosis. N. Engl. J. Med. 355, 675–684 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Stoch, S. A. et al. Once-weekly oral alendronate 70 mg in patients with glucocorticoid-induced bone loss: a 12-month randomized, placebo-controlled clinical trial. J. Rheumatol. 36, 1705–1714 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Cohen, S. et al. Risedronate therapy prevents corticosteroid-induced bone loss: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 42, 2309–2318 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Reid, D. M. et al. Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. European Corticosteroid-Induced Osteoporosis Treatment Study. J. Bone Miner. Res. 15, 1006–1013 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Wallach, S. et al. Effects of risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy. Calcif. Tissue Int. 67, 277–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Reid, D. M., Adami, S., Devogelaer, J. P. & Chines, A. A. Risedronate increases bone density and reduces vertebral fracture risk within one year in men on corticosteroid therapy. Calcif. Tissue Int. 69, 242–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Ringe, J. D., Dorst, A., Faber, H., Ibach, K. & Sorenson, F. Intermittent intravenous ibandronate injections reduce vertebral fracture risk in corticosteroid-induced osteoporosis: results from a long-term comparative study. Osteoporos. Int. 14, 801–807 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Reid, D. M. et al. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 373, 1253–1263 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Weinstein, R. S. et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J. Clin. Invest. 109, 1041–1048 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khan, A. A. et al. Bisphosphonate associated osteonecrosis of the jaw. J. Rheumatol. 36, 478–490 (2009).

    Article  PubMed  Google Scholar 

  51. Ing-Lorenzini, K. et al. Low-energy femoral fractures associated with the long-term use of bisphosphonates: a case series from a Swiss university hospital. Drug Saf. 32, 775–785 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Compston, J. E. Skeletal actions of intermittent parathyroid hormone: effects on bone remodeling and structure. Bone 40, 1447–1452 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Lane, N. E. et al. Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J. Clin. Invest. 102, 1627–1633 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lane, N. E. et al. Bone mass continues to increase at the hip after parathyroid hormone treatment is discontinued in glucocorticoid-induced osteoporosis: results of a randomized controlled clinical trial. J. Bone Miner. Res. 15, 944–951 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Saag, K. G. et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N. Engl. J. Med. 357, 2028–2039 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Langdahl, B. L. et al. Teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: an analysis by gender and menopausal status. Osteoporos. Int. doi:10.1007/s00198-009-0917-y.

  57. Neer, R. M. et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Oxlund, H. et al. The anabolic effect of PTH on bone is attenuated by simultaneous glucocorticoid treatment. Bone 39, 244–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Nishida, S. et al. Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone 15, 717–723 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Jilka, R. L. et al. Increased bone formation by prevention of osteoblast apoptosis by parathyroid hormone. J. Clin. Invest. 104, 439–446 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saag, K. G. et al. Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum. 60, 3346–3355 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Richy, F., Ethgen, O., Bruyere, O. & Reginster, J. Y. Efficacy of alphacalcidol and calcitriol in primary and corticosteroid-induced osteoporosis: a meta-analysis of their effects on bone mineral density and fracture rate. Osteoporos. Int. 15, 301–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Richy, F. et al. Vitamin D analogs versus native vitamin D in preventing bone loss and osteoporosis-related fractures: a comparative meta-analysis. Calcif. Tissue Int. 76, 176–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. De Nijs, R. N. et al. Alendronate or alfacalcidol in glucocorticoid-induced osteoporosis. N. Engl. J. Med. 355, 675–684 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Devogelaer, J. P. et al. Evidence-based guidelines for the prevention and treatment of glucocorticoid-induced osteoporosis: a consensus document of the Belgian Bone Club. Osteoporos. Int. 17, 8–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Gourlay, M., Franceschini, N. & Sheyn, Y. Prevention and treatment strategies for glucocorticoid-induced osteoporosis. Clin. Rheumatol. 26, 144–153 (2007).

    Article  PubMed  Google Scholar 

  67. Guidelines Working Group for the Bone and Tooth Society, National Osteoporosis Society and Royal College of Physicians. Glucocorticoid-induced osteoporosis: guidelines for prevention and treatment (Royal College of Physicians, London, 2002).

  68. American College of Rheumatology ad hoc Committee on Glucocorticoid-induced Osteoporosis. Recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis: 2001 update. Arthritis Rheum. 44, 1496–1503 (2001).

  69. Brown, J. P. et al. 2002 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada. CMAJ 167 (10 Suppl.), S1–S34 (2002).

    PubMed  PubMed Central  Google Scholar 

  70. Nawata, H. et al. Guidelines on the management and treatment of glucocorticoid-induced osteoporosis of the Japanese Society of Bone and Mineral Research (2004). J. Bone Miner. Metab. 23, 105–109 (2005).

    Article  PubMed  Google Scholar 

  71. Geusens, P. et al. Review and evaluation of the Dutch guidelines for osteoporosis. J. Eval. Clin. Pract. 12, 539–548 (2006).

    Article  PubMed  Google Scholar 

  72. National Osteoporosis Foundation. Clinician's guide to prevention and treatment of osteoporosis [online] (2008).

  73. Compston, J. et al. Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas 62, 105–108 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the NHS National Institute of Health Research (UK). Désirée Lie, University of California, Orange, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author, the Journal Editor J. Buckland and the CME questions author D. Lie declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compston, J. Management of glucocorticoid-induced osteoporosis. Nat Rev Rheumatol 6, 82–88 (2010). https://doi.org/10.1038/nrrheum.2009.259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing