Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tuberculosis: a problem with persistence

Key Points

  • With 8 million new infections each year and 2 million deaths, tuberculosis is a serious problem; this problem is compounded by the 2 billion people who have been infected and now carry latent infection that might reactivate later in life.

  • Evidence for persistent infection.

  • Epidemiological evidence of persistent infection shows that reactivation occurs where there is a low risk of reinfection and is related to both age and immune status; in endemic areas both reactivation and reinfection occur. Autopsy studies have detected viable bacteria in asymptomatic individuals, and provide evidence that bacteria can be found where there are no visible lesions. Animal models of persistence, particularly mice, provide a means of dissecting the interaction between host and bacteria. The murine model provides evidence that, during the persistent plateau phase of infection, mycobacteria are dividing very slowly or not at all. Mycobacterial mutants with persistence phenotypes have been constructed by inactivating a wide range of genes, providing clues to the mechanisms that mycobacteria use.

  • The immune response.

  • Having controlled initial infection, why does the immune response not clear the bacteria? Having coped with persistent infection, what triggers breakdown to active disease? Containment uses both the adaptive and innate immune responses, including macrophages and dendritic cells signalling through several receptors. CD4+ T cells and cytokines have a central role in containment, with other cell types (including CD8+ T cells) being involved in the control of persistence.

  • Targeting persistent infection.

  • Present therapies seek to break transmission by treating patients with active disease — an intervention that prevents the progression of patients with latent infection to active disease. This could be achieved by targeted drugs against persistent bacteria, or by post-exposure vaccination.

Abstract

Mycobacterium tuberculosis is one of most successful pathogens of mankind, infecting one-third of the global population and claiming two million lives every year. The ability of the bacteria to persist in the form of a long-term asymptomatic infection, referred to as latent tuberculosis, is central to the biology of the disease. The persistence of bacteria in superficially normal tissue was recognized soon after the discovery of the tubercle bacillus, and much of our knowledge about persistent populations of M. tuberculosis dates back to the first half of the last century. Recent advances in microbial genetics and host immunity provide an opportunity for renewed investigation of this persistent threat to human health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The search for persistent M. tuberculosis.
Figure 2: A simple plateau model for persistent infection in mice.
Figure 3: Immune mechanisms of containment and persistence.

Similar content being viewed by others

References

  1. Dye, C., Scheele, S., Dolin, P., Pathania, V. & Raviglione, M. C. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282, 677–686 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Bloom, B. R. & Murray, C. J. Tuberculosis: commentary on a reemergent killer. Science 257, 1055–1064 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Selwyn, P. A. et al. A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N. Engl. J. Med. 320, 545–550 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Russell, D. G. Mycobacterium tuberculosis: here today, and here tomorrow. Nature Rev. Mol. Cell Biol. 2, 569–577 (2001).

    Article  CAS  Google Scholar 

  5. Via, L. E. et al. Effects of cytokines on mycobacterial phagosome maturation. J. Cell Sci. 111, 897–905 (1998).

    CAS  PubMed  Google Scholar 

  6. Schaible, U. E., Sturgill-Koszycki, S., Schlesinger, P. H. & Russell, D. G. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J. Immunol. 160, 1290–1296 (1998).

    CAS  PubMed  Google Scholar 

  7. Kaufmann, S. H. How can immunology contribute to the control of tuberculosis? Nature Rev. Immunol. 1, 20–30 (2001).

    Article  CAS  Google Scholar 

  8. Ewer, K. et al. Comparison of T-cell-based assay with tuberculin skin test for diagnosis of Mycobacterium tuberculosis infection in a school tuberculosis outbreak. Lancet 361, 1168–1173 (2003). The use of defined mycobacterial antigens in a T-cell-based diagnostic test is more accurate than the tuberculin skin test and could improve TB control by more precise targeting of preventive treatment.

    Article  PubMed  Google Scholar 

  9. Mazurek, G. H. et al. Comparison of a whole-blood interferon γ assay with tuberculin skin testing for detecting latent Mycobacterium tuberculosis infection. JAMA 286, 1740–1747 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Stead, W. W. Pathogenesis of a first episode of chronic pulmonary tuberculosis in man: recrudescence of residuals of the primary infection or exogenous reinfection? Am. Rev. Respir. Dis. 95, 729–745 (1967).

    CAS  PubMed  Google Scholar 

  11. Powell, K. E. & Farer, L. S. The rising age of the tuberculosis patient: a sign of success and failure. J. Infect. Dis. 142, 946–948 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Comstock, G. W., Baum, C. & Snider, D. E. Jr. Isoniazid prophylaxis among Alaskan Eskimos: a final report of the bethel isoniazid studies. Am. Rev. Respir. Dis. 119, 827–830 (1979).

    CAS  PubMed  Google Scholar 

  13. Lillebaek, T. et al. Molecular evidence of endogenous reactivation of Mycobacterium tuberculosis after 33 years of latent infection. J. Infect. Dis. 185, 401–404 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Small, P. M. et al. The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N. Engl. J. Med. 330, 1703–1709 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Maguire, H. et al. Molecular epidemiology of tuberculosis in London 1995–7 showing low rate of active transmission. Thorax 57, 617–622 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Opie, E. L. & Aronson, J. D. Tubercle bacilli in latent tuberculous lesions and in lung tissue without tuberculous lesions. Arch. Pathol. 4, 1–21 (1927).

    Google Scholar 

  17. Griffith, A. S. Types of tubercle bacilli in human tuberculosis. J. Pathol. Bacteriol. 32, 813–840 (1929).

    Article  Google Scholar 

  18. Feldman, W. H. & Bagenstoss, A. H. The residual infectivity of the primary complex of tuberculosis. Am. J. Pathol. 14, 473–490 (1938).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Robertson, H. E. The persistence of tuberculous infections. Am. J. Pathol. 9, S711–S719 (1933).

    Google Scholar 

  20. Vandiviere, H. M., Loring, W. E., Melvin, I. & Willis, S. The treated pulmonary lesion and its tubercle bacillus. II. The death and resurrection. Am. J. Med. Sci. 232, 30–37 (1956).

    Article  CAS  PubMed  Google Scholar 

  21. Loomis, H. P. Some facts in the etiology of tuberculosis, evidenced by thirty autopsies and experiments upon animals. Medical Record 38, 689–698 (1890).

    Google Scholar 

  22. Pizzini, D. L. Tuberkelbacillen in den Lymphdrüsen Nichttuberkulöser. Ztschr. f. Klin. Med. 21, 329–343 (1892).

    Google Scholar 

  23. Kälble, J. Untersuchungen über den Keimgehalt normaler Bronchiallymphdrüsen. Munchen med. Wchnschr. 46, 622–625 (1899).

    Google Scholar 

  24. Balasubramanian, V., Wiegeshaus, E. H., Taylor, B. T. & Smith, D. W. Pathogenesis of tuberculosis: pathway to apical localization. Tuber. Lung Dis. 75, 168–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Feldman, W. H. & Bagenstoss, A. H. The occurrence of virulent tubercle bacteria in presumably non-tuberculous lung tissue. Am. J. Pathol. 5, 501–515 (1939).

    Google Scholar 

  26. Hernandez-Pando, R. et al. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356, 2133–2138 (2000). Revisits Opie and Aronson's work using modern techniques to detect mycobacterial DNA in lung tissue without histological evidence of tuberculous lesions. DNA is situated not only in macrophages but also other non-professional phagocytic cells.

    Article  CAS  PubMed  Google Scholar 

  27. Rhoades, E. R., Frank, A. A. & Orme, I. M. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber. Lung Dis. 78, 57–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. McCune, R. M., Feldman, F. M., Lambert, H. P. & McDermott, W. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J. Exp. Med. 123, 445–468 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mitchison, D. A. Treatment of tuberculosis. The Mitchell lecture 1979. J. R. Coll. Physicians Lond. 14, 98–99 (1980).

    Google Scholar 

  30. McMurray, D. N. Disease model: pulmonary tuberculosis. Trends Mol. Med. 7, 135–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Ho, R. S., Fok, J. S., Harding, G. E. & Smith, D. W. Host–parasite relationships in experimental airborne tuberculosis. VII. Fate of Mycobacterium tuberculosis in primary lung lesions and in primary lesion-free lung tissue infected as a result of bacillemia. J. Infect. Dis. 138, 237–241 (1978).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, D. W., Balasubramanian, V. & Wiegeshaus, E. A guinea pig model of experimental airborne tuberculosis for evaluation of the response to chemotherapy: the effect on bacilli in the initial phase of treatment. Tubercle 72, 223–231 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Dannenberg, A. M. J. in Tuberculosis: Pathogenesis, Protection and Control (ed. Bloom, B. R.) 149–156 (American Society for Microbiology, Washington DC, 1994).

    Book  Google Scholar 

  34. Walsh, G. P. et al. The Philippine cynomolgus monkey (Macaca fasicularis) provides a new non-human primate model of tuberculosis that resembles human disease. Nature Med. 2, 430–436 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Flynn, J. L. et al. Non-human primates: a model for tuberculosis research. Tuberculosis 83, 116–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Much, H. Über die granulare, nach Ziel nicht darstellbare Form des Tuberkulosevirus. Beitrage Klinische Tuberkulose 8, 85 (1907).

    Article  Google Scholar 

  37. Much, H. Die nach Ziehl nicht darstellbaren Formen des Tuberkelbacillus. Berl. Klin. Wochenschr. 45, 691–694 (1908).

    Google Scholar 

  38. Calmette, A. & Valtis, J. Virulent filterable elements of the tubercle bacillus. Ann. Med. 19, 553–560 (1926).

    Google Scholar 

  39. Khomenko, A. G. The variability of Mycobacterium tuberculosis in patients with cavitary pulmonary tuberculosis in the course of chemotherapy. Tubercle 68, 243–253 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Rees, R. J. W. & D'Arcy Hart, P. Analysis of the host–parasite equilibrium in chronic murine tuberculosis by total and viable bacillary counts. Br. J. Exp. Pathol. 42, 83–88 (1960).

    Google Scholar 

  42. Wallace, J. G. The heat resistance of tubercle bacilli in the lungs of infected mice. Am. Rev. Respir. Dis. 83, 866–871 (1961).

    CAS  PubMed  Google Scholar 

  43. Wayne, L. G. & Sohaskey, C. D. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Wayne, L. G. & Lin, K. Y. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect. Immun. 37, 1042–1049 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. McKinney, J. D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000). First mycobacterial knockout with a defect in persistence in the mouse model. Evidence that the metabolism of M. tuberculosis in vivo is influenced by the host response — an observation with important implications for the treatment of chronic TB.

    Article  CAS  PubMed  Google Scholar 

  46. Sherman, D. R. et al. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin. Proc. Natl Acad. Sci. USA 98, 7534–7539 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park, H. D. et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48, 833–843 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yuan, Y., Crane, D. D. & Barry, C. E. III. Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial α-crystallin homologue. J. Bacteriol. 178, 4484–4492 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi, L., Jung, Y. J., Tyagi, S., Gennaro, M. L. & North, R. J. Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc. Natl Acad. Sci. USA 100, 241–246 (2003). Defines the transcription signature of M. tuberculosis as it transitions from growth to persistence in the mouse lung. The bacterial transcription changes measured are likely to be induced by nitric oxide generated by infected macrophages.

    Article  CAS  PubMed  Google Scholar 

  50. Voskuil, M. I. et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198, 705–713 (2003). A model postulating that, in granulomas, inhibition of respiration by nitric oxide production and oxygen limitation constrains mycobacterial replication rates in people with latent TB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cramer, T. & Johnson, R. S. A novel role for the hypoxia inducible transcription factor HIF-1α: critical regulation of inflammatory cell function. Cell Cycle 2, 192–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Mukamolova, G. V., Kaprelyants, A. S., Young, D. I., Young, M. & Kell, D. B. A bacterial cytokine. Proc. Natl Acad. Sci. USA 95, 8916–8921 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Steyn, A. J. et al. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc. Natl Acad. Sci. USA 99, 3147–3152 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zahrt, T. C. & Deretic, V. Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc. Natl Acad. Sci. USA 98, 12706–12711 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Glickman, M. S., Cox, J. S. & Jacobs, W. R. Jr. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5, 717–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Ramakrishnan, L., Federspiel, N. A. & Falkow, S. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288, 1436–1439 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Stewart, G. R. et al. Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. Nature Med. 7, 732–737 (2001). Evidence that overexpression of heat-shock proteins in M. tuberculosis provides a crucial signal alerting the host immune system to its presence, and which might provide a new strategy to boost the immune response of individuals with latent TB infection.

    Article  CAS  PubMed  Google Scholar 

  58. Kaushal, D. et al. Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberculosis mutant lacking alternative sigma factor, SigH. Proc. Natl Acad. Sci. USA 99, 8330–8335 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parish, T. et al. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect. Immun. 71, 1134–1140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Flynn, J. L. & Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Casanova, J. L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ting, L. M., Kim, A. C., Cattamanchi, A. & Ernst, J. D. Mycobacterium tuberculosis inhibits IFN-γ transcriptional responses without inhibiting activation of STAT1. J. Immunol. 163, 3898–3906 (1999).

    CAS  PubMed  Google Scholar 

  63. Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. & Sacks, D. L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Sakaguchi, S. Regulatory T cells: mediating compromises between host and parasite. Nature Immunol. 4, 10–11 (2003).

    Article  CAS  Google Scholar 

  65. Caruso, A. M. et al. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-γ, yet succumb to tuberculosis. J. Immunol. 162, 5407–5416 (1999).

    CAS  PubMed  Google Scholar 

  66. van Pinxteren, L. A., Cassidy, J. P., Smedegaard, B. H., Agger, E. M. & Andersen, P. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur. J. Immunol. 30, 3689–3698 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Scanga, C. A. et al. Depletion of CD4+ T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon γ and nitric oxide synthase 2. J. Exp. Med. 192, 347–358 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wong, P. & Pamer, E. G. CD8 T cell responses to infectious pathogens. Annu. Rev. Immunol. 21, 29–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Serbina, N. V., Liu, C. C., Scanga, C. A. & Flynn, J. L. CD8+ CTL from lungs of Mycobacterium tuberculosis-infected mice express perforin in vivo and lyse infected macrophages. J. Immunol. 165, 353–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Turner, J. et al. CD8- and CD95/95L-dependent mechanisms of resistance in mice with chronic pulmonary tuberculosis. Am. J. Respir. Cell Mol. Biol. 24, 203–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Turner, J. et al. In vivo IL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice. J. Immunol. 169, 6343–6351 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Mohan, V. P. et al. Effects of tumor necrosis factor α on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect. Immun. 69, 1847–1855 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001). Demonstrates the importance of TNF-α in controlling latent infection — patients receiving an anti-TNF-α monoclonal antibody developed active TB.

    Article  CAS  PubMed  Google Scholar 

  75. Winslow, G. M., Roberts, A. D., Blackman, M. A. & Woodland, D. L. Persistence and turnover of antigen-specific CD4 T cells during chronic tuberculosis infection in the mouse. J. Immunol. 170, 2046–2052 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Comstock, G. W., Livesay, V. T. & Woolpert, S. F. The prognosis of a positive tuberculin reaction in childhood and adolescence. Am. J. Epidemiol. 99, 131–138 (1974).

    Article  CAS  PubMed  Google Scholar 

  77. Underhill, D. M., Ozinsky, A., Smith, K. D. & Aderem, A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl Acad. Sci. USA 96, 14459–14463 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thoma-Uszynski, S. et al. Induction of direct antimicrobial activity through mammalian Toll-like receptors. Science 291, 1544–1547 (2001). First paper to show that mammalian TLRs respond to microbial ligands and can activate antimicrobial effector pathways at the site of infection.

    Article  CAS  PubMed  Google Scholar 

  79. Noss, E. H. et al. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J. Immunol. 167, 910–918 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Lopez, M. et al. The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like receptor-2. J. Immunol. 170, 2409–2416 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Geijtenbeek, T. B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tailleux, L. et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197, 121–127 (2003). References 81 and 82 show that DC-SIGN mediates the entry of M. tuberculosis into dendritic cells in vivo and is likely to influence bacterial persistence and host immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Manca, C. et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-α/β. Proc. Natl Acad. Sci. USA 98, 5752–5757 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dye, C., Watt, C. J. & Bleed, D. Low access to a highly effective therapy: a challenge for international tuberculosis control. Bull. World Health Organ. 80, 437–444 (2002).

    PubMed  PubMed Central  Google Scholar 

  85. Stewart, G. R. & Young, D. B. Tuberculosis vaccines. Brit. Med. Bull. 62, 73–86 (2002).

    Article  PubMed  Google Scholar 

  86. Lalvani, A. et al. Enhanced contact tracing and spatial tracking of Mycobacterium tuberculosis infection by enumeration of antigen-specific T cells. Lancet 357, 2017–2021 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. American-Thoracic Society. Targeted tuberculin testing and treatment of latent tuberculosis infection. Am. J. Respir. Crit. Care Med. 161, S221–S247 (2000).

  88. Hmama, Z., Gabathuler, R., Jefferies, W. A., de Jong, G. & Reiner, N. E. Attenuation of HLA-DR expression by mononuclear phagocytes infected with Mycobacterium tuberculosis is related to intracellular sequestration of immature class II heterodimers. J. Immunol. 161, 4882–4893 (1998).

    CAS  PubMed  Google Scholar 

  89. Noss, E. H., Harding, C. V. & Boom, W. H. Mycobacterium tuberculosis inhibits MHC class II antigen processing in murine bone marrow macrophages. Cell. Immunol. 201, 63–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Global Alliance Tuberculosis. Scientific blueprint for tuberculosis drug development. Tuberculosis 81, 1–52 (2001).

  91. Lowrie, D. B. et al. Therapy of tuberculosis in mice by DNA vaccination. Nature 400, 269–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Bonato, V. L., Lima, V. M., Tascon, R. E., Lowrie, D. B. & Silva, C. L. Identification and characterization of protective T cells in hsp65 DNA-vaccinated and Mycobacterium tuberculosis-infected mice. Infect. Immun. 66, 169–175 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Turner, O. C. et al. Lack of protection in mice and necrotizing bronchointerstitial pneumonia with bronchiolitis in guinea pigs immunized with vaccines directed against the hsp60 molecule of Mycobacterium tuberculosis. Infect. Immun. 68, 3674–3679 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Taylor, J. L. et al. Pulmonary necrosis resulting from DNA vaccination against tuberculosis. Infect. Immun. 71, 2192–2198 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, Z., Kelley, C., Collins, F., Rouse, D. & Morris, S. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J. Infect. Dis. 177, 1030–1035 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Fritz, C., Maass, S., Kreft, A. & Bange, F. C. Dependence of Mycobacterium bovis BCG on anaerobic nitrate reductase for persistence is tissue specific. Infect. Immun. 70, 286–291 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Murphy, H. N. et al. Trehalose metabolism in mycobacteria. Keystone Symposium, Taos (2003).

  98. Chen, P., Ruiz, R. E., Li, Q., Silver, R. F. & Bishai, W. R. Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF. Infect. Immun. 68, 5575–5580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Barry, C. E. III. Mycobacterial lipids and lipid metabolism. Keystone Symposium, Taos (2003).

  100. Kaplan, G. The role of Mycobacterium tuberculosis lipids in immunity and virulence of clinical isolates. Keystone Symposium, Taos (2003).

  101. Primm, T. P. et al. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J. Bacteriol. 182, 4889–4898 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hutter, B. & Dick, T. Up-regulation of narX, encoding a putative 'fused nitrate reductase' in anaerobic dormant Mycobacterium bovis BCG. FEMS Microbiol. Lett. 178, 63–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Fenhalls, G. et al. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect. Immun. 70, 6330–6338 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hutter, B. & Dick, T. Analysis of the dormancy-inducible narK2 promoter in Mycobacterium bovis BCG. FEMS Microbiol. Lett. 188, 141–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Chan, K. et al. Complex pattern of Mycobacterium marinum gene expression during long-term granulomatous infection. Proc. Natl Acad. Sci. USA 99, 3920–3925 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank one of the referees for their stimulating and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Young.

Related links

Related links

DATABASES

Entrez

Mycobacterium bovis

Mycobacterium tuberculosis

Infectious Disease Information

tuberculosis

LocusLink

IFN-γ

TNF-α

FURTHER INFORMATION

Centre for Molecular Microbiology and Infection

Glossary

MACROPHAGE

Cell of the mononuclear phagocyte system that can phagocytose foreign particulate material. Macrophages are present in many tissues and are important for nonspecific immune reactions.

PHAGOSOME

A membrane-bounded cytoplasmic vacuole formed around a particle ingested by phagocytosis.

DENDRITIC CELLS

Professional antigen-presenting cells that take up proteins and present peptide antigens to T cells in conjunction with accessory molecules that stimulate T-cell activation. Characterized by many long thin processes extending from them.

T CELLS

Lymphocytes that undergo maturation and differentiation in the thymus. They are responsible for immune reactions that involve cell–cell interactions.

FOAMY GIANT CELL

A giant, multinucleate macrophage loaded with lipid.

BCG

Bacille Calmette–Guérin, the attenuated M. bovis live vaccine.

CASEOUS GRANULOMAS

An encapsulated lesion, known as caseous owing to a supposed resemblance to crumbly cheese. The underlying cells and tissue are totally destroyed in the process of caseous necrosis.

HYPOXIA

A condition in which the concentration of oxygen is greater than 0% but less than 20%.

WHOLE-GENOME PROFILING

The use of microarrays to obtain a snapshot of an organism's response to stimuli in terms of gene expression or genetic recombination.

SIGMA FACTOR

A subunit of bacterial RNA polymerase that is required for initiation of transcription. Some sigma factors confer the ability to recognize and bind to a particular promoter, thereby changing the pattern of gene expression.

PERFORIN

A pore-forming protein present in the granules of cytotoxic T cells.

TOLL-LIKE RECEPTOR

A family of mammalian transmembrane receptors related to the Toll protein of Drosophila. They are involved in the recognition of pathogens and microbial products and activate antimicrobial effector pathways in phagocytes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, G., Robertson, B. & Young, D. Tuberculosis: a problem with persistence. Nat Rev Microbiol 1, 97–105 (2003). https://doi.org/10.1038/nrmicro749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing