Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cooperation of Toll-like receptor signals in innate immune defence

Key Points

  • Toll-like receptor (TLR)-mediated recognition of pathogens is now thought to have a crucial role in innate immune defence, as well as in adaptive immunity. Nevertheless, the triggering of a single TLR is rarely sufficient to mediate these functions in response to microorganisms and so other members of the TLR family, as well as pattern-recognition receptors belonging to other families, must cooperate to stimulate effective host resistance.

  • In vitro studies have indicated that stimulation with multiple ligands each targeting different TLRs leads to marked synergy in the activation of antigen-presenting cells (such as dendritic cells and macrophages). Such synergy is particularly notable when interleukin-12 (IL-12) is used as a 'read-out' of TLR stimulation.

  • Systematic analyses of the effects of different combinations of TLR ligands have indicated that the strongest synergies occur between ligands that trigger distinct signalling pathways (such as the MyD88- and TRIF-dependent signalling pathways).

  • The combined effects of ligation of multiple TLRs are potent and sufficient to stimulate the production of high levels of IL-12 without the need for secondary signals from T cells or enhancement by paracrine cytokines such as interferon-γ.

  • In vivo studies confirm that in many models of infectious disease, deficiencies of multiple TLRs cause a greater reduction in host resistance than single TLR deficiencies. These effects are nevertheless complex, often involving multiple effector cells and responses, as well as negative and positive effects of TLR ligation for the host.

  • The investigation of pathways of TLR cooperation in the response to infection should lead to a better understanding of the mechanisms of host resistance and provide a basis for the development of more effective adjuvants and immunotherapeutic regimens.

Abstract

The mechanisms by which the recognition of Toll-like receptor (TLR) ligands leads to host immunity remain poorly defined. It is now thought that to induce an effective immune response, microorganisms must stimulate complex sets of pattern-recognition receptors, both within and outside of the TLR family. The combined activation of these different receptors can result in complementary, synergistic or antagonistic effects that modulate innate and adaptive immunity. Therefore, a complete understanding of the role of TLRs in host resistance to infection requires 'decoding' of these multiple receptor interactions. This Review highlights recent advances in the newly emerging field of TLR cooperation and discusses their implications for the development of adjuvants and immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the structure and main signalling pathways of the PRR families.
Figure 2: Regulation of IL-12 p70 production by dendritic cells during innate and adaptive immune responses.
Figure 3: TLR ligand combinations synergistically induce production of IL-12 p70.
Figure 4: Summary of the basic mechanisms by which TLR signals cooperate for the generation of host resistance to infection.

Similar content being viewed by others

References

  1. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006). A comprehensive review of TLR biology.

    Article  CAS  PubMed  Google Scholar 

  2. Lemaitre, B. The road to Toll. Nature Rev. Immunol. 4, 521–527 (2004).

    Article  CAS  Google Scholar 

  3. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997). A pioneering report describing Toll-like signalling molecules in a higher vertebrate.

    Article  CAS  PubMed  Google Scholar 

  4. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996). Characterization of the role of Toll in resistance to pathogens of D. melanogaster.

    Article  CAS  PubMed  Google Scholar 

  5. Fritz, J. H. & Girardin, S. E. How Toll-like receptors and Nod-like receptors contribute to innate immunity in mammals. J. Endotoxin Res. 11, 390–394 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Rifkin, I. R., Leadbetter, E. A., Busconi, L., Viglianti, G. & Marshak-Rothstein, A. Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol. Rev. 204, 27–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. McGreal, E. P., Miller, J. L. & Gordon, S. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr. Opin. Immunol. 17, 18–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Brown, G. D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nature Rev. Immunol. 6, 33–43 (2006).

    Article  CAS  Google Scholar 

  10. Creagh, E. M. & O'Neill, L. A. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 27, 352–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004). This paper describes the differential expresssion of TLRs by different antigen-presenting cells.

    Article  CAS  Google Scholar 

  12. Uematsu, S. et al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nature Immunol. 7, 868–874 (2006).

    Article  CAS  Google Scholar 

  13. Beutler, E., Gelbart, T. & West, C. Synergy between TLR2 and TLR4: a safety mechanism. Blood Cells Mol. Dis. 27, 728–730 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Sato, S. et al. Synergy and cross-tolerance between toll-like receptor (TLR)2- and TLR4-mediated signaling pathways. J. Immunol. 165, 7096–7101 (2000). References 13 and 14 are early reports of cooperation between TLRs.

    Article  CAS  PubMed  Google Scholar 

  15. Girardin, S. E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Whitmore, M. M. et al. Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res. 64, 5850–5860 (2004). The first study to describe the use of multiple TLR ligands to increase host resistance.

    Article  CAS  PubMed  Google Scholar 

  17. Gautier, G. et al. A type I interferon autocrine–paracrine loop is involved in Toll-like receptor-induced interleukin-12 p70 secretion by dendritic cells. J. Exp. Med. 201, 1435–1446 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. & Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nature Immunol. 6, 769–776 (2005). References 17 and 18 are the first reports to describe the strong synergistic effects of TLR ligands on IL-12 p70 production by DCs.

    Article  CAS  Google Scholar 

  19. Re, F. & Strominger, J. L. IL-10 released by concomitant TLR2 stimulation blocks the induction of a subset of TH1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells. J. Immunol. 173, 7548–7555 (2004). One of the early studies showing differential and antagonistic functional consequences of the activation of different TLRs.

    Article  CAS  PubMed  Google Scholar 

  20. Roelofs, M. F. et al. The expression of Toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of Toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum. 52, 2313–2322 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Ma, X. et al. The interleukin 12 p40 gene promoter is primed by interferon-γ in monocytic cells. J. Exp. Med. 183, 147–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Edwards, A. D. et al. Microbial recognition via Toll-like receptor-dependent and -independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering. J. Immunol. 169, 3652–3660 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Abdi, K., Singh, N. & Matzinger, P. T-cell control of IL-12p75 production. Scand. J. Immunol. 64, 83–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Bekeredjian-Ding, I. et al. T cell-independent, TLR-induced IL-12p70 production in primary human monocytes. J. Immunol. 176, 7438–7446 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, J., Guan, X., Tamura, T., Ozato, K. & Ma, X. Synergistic activation of interleukin-12 p35 gene transcription by interferon regulatory factor-1 and interferon consensus sequence-binding protein. J. Biol. Chem. 279, 55609–55617 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Hasan, U. A., Trinchieri, G. & Vlach, J. Toll-like receptor signaling stimulates cell cycle entry and progression in fibroblasts. J. Biol. Chem. 280, 20620–20627 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Schulz, O. et al. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13, 453–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Bagchi, A. et al. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J. Immunol. 178, 1164–1171 (2007). A recent report documenting synergy between MyD88- and TRIF-dependent signalling by TLR agonists.

    Article  CAS  PubMed  Google Scholar 

  29. Bafica, A. et al. TLR9 regulates TH1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 202, 1715–1724 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bafica, A. et al. Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J. Immunol. 177, 3515–3519 (2006). The first description of TLR cooperation in host defence against a protozoan pathogen.

    Article  CAS  PubMed  Google Scholar 

  31. Kagan, J. C. & Medzhitov, R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Rhee, S. H., Jones, B. W., Toshchakov, V., Vogel, S. N. & Fenton, M. J. Toll-like receptors 2 and 4 activate STAT1 serine phosphorylation by distinct mechanisms in macrophages. J. Biol. Chem. 278, 22506–22512 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Dahlberg, A., Auble, M. R. & Petro, T. M. Reduced expression of IL-12 p35 by SJL/J macrophages responding to Theiler's virus infection is associated with constitutive activation of IRF-3. Virology 353, 422–432 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Honda, K. et al. Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Liew, F. Y., Xu, D., Brint, E. K. & O'Neill, L. A. Negative regulation of Toll-like receptor-mediated immune responses. Nature Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  36. van Heel, D. A. et al. Synergistic enhancement of Toll-like receptor responses by NOD1 activation. Eur. J. Immunol. 35, 2471–2476 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Fritz, J. H. et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur. J. Immunol. 35, 2459–2470 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Uehara, A. et al. Muramyldipeptide and diaminopimelic acid-containing desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture. Cell. Microbiol. 7, 53–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Tada, H., Aiba, S., Shibata, K., Ohteki, T. & Takada, H. Synergistic effect of Nod1 and Nod2 agonists with Toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect. Immun. 73, 7967–7976 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Watanabe, T., Kitani, A., Murray, P. J. & Strober, W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nature Immunol. 5, 800–808 (2004).

    Article  CAS  Google Scholar 

  41. Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe, T., Kitani, A. & Strober, W. NOD2 regulation of Toll-like receptor responses and the pathogenesis of Crohn's disease. Gut 54, 1515–1518 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Heel, D. A. et al. Synergy between TLR9 and NOD2 innate immune responses is lost in genetic Crohn's disease. Gut 54, 1553–1557 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Strober, W., Murray, P. J., Kitani, A. & Watanabe, T. Signalling pathways and molecular interactions of NOD1 and NOD2. Nature Rev. Immunol. 6, 9–20 (2006).

    Article  CAS  Google Scholar 

  45. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Dinarello, C. A. Unraveling the NALP-3/IL-1β inflammasome: a big lesson from a small mutation. Immunity 20, 243–244 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Kanneganti, T. D. et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 281, 36560–36568 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Sutterwala, F. S. et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Ogura, Y., Sutterwala, F. S. & Flavell, R. A. The inflammasome: first line of the immune response to cell stress. Cell 126, 659–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin-1β in salmonella-infected macrophages. Nature Immunol. 7, 576–582 (2006).

    Article  CAS  Google Scholar 

  54. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin-1β via Ipaf. Nature Immunol. 7, 569–575 (2006).

    Article  CAS  Google Scholar 

  55. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Gitlin, L. et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl Acad. Sci. USA 103, 8459–8464 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Underhill, D. M. & Ozinsky, A. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20, 825–852 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Pathak, S. K. et al. Mycobacterium tuberculosis lipoarabinomannan-mediated IRAK-M induction negatively regulates Toll-like receptor-dependent interleukin-12 p40 production in macrophages. J. Biol. Chem. 280, 42794–42800 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Yadav, M. & Schorey, J. S. The β-glucan receptor Dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108, 3168–3175 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rogers, N. C. et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C-type lectins. Immunity 22, 507–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Netea, M. G. et al. Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the NACHT-LRR (NLR) pattern recognition receptors. J. Leukocyte Biol. 80, 1454–1461 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Radsak, M. P., Salih, H. R., Rammensee, H. G. & Schild, H. Triggering receptor expressed on myeloid cells-1 in neutrophil inflammatory responses: differential regulation of activation and survival. J. Immunol. 172, 4956–4963 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Turnbull, I. R. et al. Cutting edge: TREM-2 attenuates macrophage activation. J. Immunol. 177, 3520–3524 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Hamerman, J. A. et al. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J. Immunol. 177, 2051–2055 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Cappiello, M. G., Sutterwala, F. S., Trinchieri, G., Mosser, D. M. & Ma, X. Suppression of IL-12 transcription in macrophages following Fcγ receptor ligation. J. Immunol. 166, 4498–4506 (2001).

    Article  CAS  Google Scholar 

  66. Merck, E. et al. Ligation of the FcRγ chain-associated human osteoclast-associated receptor enhances the proinflammatory responses of human monocytes and neutrophils. J. Immunol. 176, 3149–3156 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Palliser, D., Ploegh, H. & Boes, M. Myeloid differentiation factor 88 is required for cross-priming in vivo. J. Immunol. 172, 3415–3421 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Sun, D. & Ding, A. MyD88-mediated stabilization of interferon-γ-induced cytokine and chemokine mRNA. Nature Immunol. 7, 375–381 (2006).

    Article  CAS  Google Scholar 

  69. Reiling, N. et al. Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J. Immunol. 169, 3480–3484 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, T. et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Med. 10, 1366–1373 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Kurt-Jones, E. A. et al. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc. Natl Acad. Sci. USA 101, 1315–1320 (2004). References 70 and 71 describe the detrimental effects of specific TLR signals in viral infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sutmuller, R. P. et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest. 116, 485–494 (2006). This study describes how TLR signalling can negatively regulate immune responses through the induction of regulatory T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tabeta, K. et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl Acad. Sci. USA 101, 3516–3521 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Szomolanyi-Tsuda, E., Liang, X., Welsh, R. M., Kurt-Jones, E. A. & Finberg, R. W. Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J. Virol. 80, 4286–4291 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Delale, T. et al. MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-α release and initiation of immune responses in vivo. J. Immunol. 175, 6723–6732 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. O'Brien, A. D. et al. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J. Immunol. 124, 20–24 (1980).

    CAS  PubMed  Google Scholar 

  77. Beutler, B. TLR4 as the mammalian endotoxin sensor. Curr. Top. Microbiol. Immunol. 270, 109–120 (2002).

    CAS  PubMed  Google Scholar 

  78. Weiss, D. S., Raupach, B., Takeda, K., Akira, S. & Zychlinsky, A. Toll-like receptors are temporally involved in host defense. J. Immunol. 172, 4463–4469 (2004). An early paper describing TLR cooperation in the control of bacterial infection.

    Article  CAS  PubMed  Google Scholar 

  79. Koga, R. et al. TLR-dependent induction of IFN-β mediates host defense against Trypanosoma cruzi. J. Immunol. 177, 7059–7066 (2006). The first report of cooperation of TRIF- and MyD88-dependent signalling pathways in host defence in vivo.

    Article  CAS  PubMed  Google Scholar 

  80. Taylor, G. A., Feng, C. G. & Sher, A. p47 GTPases: regulators of immunity to intracellular pathogens. Nature Rev. Immunol. 4, 100–109 (2004).

    Article  CAS  Google Scholar 

  81. Oliveira, A. C. et al. Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. J. Immunol. 173, 5688–5696 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Turvey, S. E. & Hawn, T. R. Towards subtlety: understanding the role of Toll-like receptor signaling in susceptibility to human infections. Clin. Immunol. 120, 1–9 (2006). A recent review of the effect of human TLR polymorphisms on host resistance to infectious diseases.

    Article  CAS  PubMed  Google Scholar 

  83. Ku, C. L. et al. Inherited disorders of human Toll-like receptor signaling: immunological implications. Immunol. Rev. 203, 10–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Krieg, A. M. Therapeutic potential of Toll-like receptor 9 activation. Nature Rev. Drug Discov. 5, 471–484 (2006).

    Article  CAS  Google Scholar 

  85. Wille-Reece, U. et al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of TH1 and CD8+ T cell responses in nonhuman primates. Proc. Natl Acad. Sci. USA 102, 15190–15194 (2005). This study describes the effects of coupling a TLR ligand to antigen on the immune response induced to a vaccine antigen in a primate model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yarovinsky, F., Kanzler, H., Hieny, S., Coffman, R. L. & Sher, A. Toll-like receptor recognition regulates immunodominance in an antimicrobial CD4+ T cell response. Immunity 25, 655–664 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Warger, T. et al. Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood 108, 544–550 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Querec, T. et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 203, 413–424 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sato, S. et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304–4310 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Levy, D. E., Marie, I., Smith, E. & Prakash, A. Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. J. Interferon Cytokine Res. 22, 87–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Tailor, P., Tamura, T. & Ozato, K. IRF family proteins and type I interferon induction in dendritic cells. Cell Res. 16, 134–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Honda, K. et al. Role of a transductional–transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc. Natl Acad. Sci. USA 101, 15416–15421 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol. 5, 1061–1068 (2004).

    Article  CAS  Google Scholar 

  94. Barnes, B. J., Moore, P. A. & Pitha, P. M. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon-α genes. J. Biol. Chem. 276, 23382–23390 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Guiducci, C. et al. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J. Exp. Med. 203, 1999–2008 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Netea, M. G. et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Invest. 116, 1642–1650 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cambi, A., Koopman, M. & Figdor, C. G. How C-type lectins detect pathogens. Cell. Microbiol. 7, 481–488 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors: old friends and new family members. Immunity 24, 19–28 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Bouchon, A., Facchetti, F., Weigand, M. A. & Colonna, M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410, 1103–1107 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Wysocka, M. et al. Interleukin-12 is required for interferon-γ production and lethality in lipopolysaccharide-induced shock in mice. Eur. J. Immunol. 25, 672–676 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Asselin-Paturel, C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nature Immunol. 2, 1144–1150 (2001).

    Article  CAS  Google Scholar 

  102. Byrnes, A. A. et al. Type I interferons and IL-12: convergence and cross-regulation among mediators of cellular immunity. Eur. J. Immunol. 31, 2026–2034 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gerosa, F. et al. The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J. Immunol. 174, 727–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. D'Andrea, A., Ma, X., Aste-Amezaga, M., Paganin, C. & Trinchieri, G. Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral blood mononuclear cells: priming for IL-12 and tumor necrosis factor α production. J. Exp. Med. 181, 537–546 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the major contributions of S. Akira and his colleagues to the work summarized in this Review, which was made possible in a large part by their engineering of TLR-deficient mouse strains and their generosity in providing them to the scientific community. G.T. and A.S. are supported by the intramural research programs of the National Cancer Institute (USA) and the National Institute of Allergy and Infectious Disease (USA), respectively.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Alan Sher's homepage

Glossary

Pattern-recognition receptor

A receptor that recognizes unique structures that are shared by different microorganisms. Signalling through these receptors typically leads to the production of pro-inflammatory cytokines and chemokines and to the expression of co-stimulatory molecules by antigen-presenting cells. The expression of co-stimulatory molecules, together with the presentation of antigenic peptides, by antigen-presenting cells couples innate immune recognition of pathogens with the activation of adaptive immune responses.

Haemozoin

The crystalline product resulting from digestion of haemoglobin by the intraerythrocytic replicative stage of malaria parasites (Plasmodium spp.).

C-type lectins

Animal receptor proteins that bind carbohydrates in a calcium-dependent manner. The binding activity of C-type lectins is based on the structure of the carbohydrate-recognition domain (CRD), which is highly conserved between members of this family.

Cross-tolerance

Cross-tolerance is observed when the addition of a Toll-like receptor (TLR) ligand induces tolerance to subsequent challenge with the same stimulus used for priming and also to subsequent challenges with other stimuli that signal through one or more different TLRs.

Microarray analysis

A technique for measuring the transcription of genes. It involves hybridization of fluorescently labelled cDNA prepared from a cell or tissue of interest with glass slides or other surfaces dotted with thousands of oligonucleotides or cDNA, ideally representing all expressed genes in the species.

Crohn's disease

A form of chronic inflammatory bowel disease that can affect the entire gastrointestinal tract, but is most common in the colon and terminal ileum. It is characterized by transmural inflammation and granuloma formation, and it is thought to result from an abnormal T-cell-mediated immune response to commensal bacteria.

Caspases

A family of cytosolic proteases that contain a cysteine residue in the active site and that cleave their substrate after an aspartic-acid residue. They can be divided into pro-inflammatory caspases (caspase-1, -4, -5 and -11), which cleave and activate pro-inflammatory cytokines, and pro-apoptotic caspases, which cleave and activate pro-apoptotic substrates.

Contact hypersensitivity

The initial reaction that occurs after the first exposure to a 'sensitizer' hapten or antigen. This step requires dendritic-cell migration to lymph nodes to prime contact-antigen-specific T cells.

Adjuvant

An agent mixed with an antigen that increases the immune response to that antigen after immunization.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinchieri, G., Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7, 179–190 (2007). https://doi.org/10.1038/nri2038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing