Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines

Key Points

  • There are four known receptors for histamine. Antagonists for H1 and H2 receptors are currently in clinical use for the treatment of allergies, insomnia and gastric acid disorders. However, there are many conditions such as asthma and chronic pruritus in which histamine has been implicated in the disease pathology, but for which the currently marketed antihistamines have little, if any, effect.

  • The most recently discovered histamine receptor, the H4 receptor, has been shown to modulate the activity of numerous cell types associated with inflammation and has been shown to drive inflammatory processes in vivo.

  • As indicated, while evidence exists for a role of histamine in driving asthmatic responses, there is little evidence for clinical efficacy of H1 receptor antagonists for the disease. However, their use at high doses or early in the disease history is supported by recent animal data. Furthermore, preclinical models suggest that H4 receptors may account for other functions of histamine that are not blocked by the H1 receptor.

  • Histamine is also the best characterized pruritogen in humans and is known be involved in driving pruritic responses induced by mast-cell degranulation, such as acute urticaria. H1 receptor antagonists appear to be clinically effective in these conditions, but not so in more chronic pruritic conditions such as those associated with atopic dermatitis or psoriasis. Pruritus in these conditions may be mediated by the H4 receptor as preclinical models have shown that it is also involved in driving pruritic responses.

  • The recent data on the novel functions of H1 and H4 receptors have opened the possibility for new breakthrough therapies for the treatment of conditions such as asthma and pruritus. In addition, there seems to be some overlap in function between the receptors, suggesting that combining H1 and H4 receptor antagonism might bring added benefit over monotherapy.

Abstract

Histamine has a key role in allergic inflammatory conditions. The inflammatory responses resulting from the liberation of histamine have long been thought to be mediated by the histamine H1 receptor, and H1-receptor antagonists — commonly known as antihistamines — have been used to treat allergies for many years. However, the importance of histamine in the pathology of conditions such as asthma and chronic pruritus may have been underestimated. Here, we review accumulating evidence suggesting that histamine indeed has roles in inflammation and immune function modulation in such diseases. In particular, the discovery of a fourth histamine receptor (H4) and its expression on numerous immune and inflammatory cells has prompted a re-evaluation of the actions of histamine, suggesting a new potential for H4-receptor antagonists and a possible synergy between H1 and H4-receptor antagonists in targeting various inflammatory conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The major classical physiological roles of histamine.
Figure 2
Figure 3: The effects of histamine on dendritic cell and T-cell interactions.
Figure 4: Potential role of histamine, and histamine H1 and H4 receptors in asthma.
Figure 5: Proposed role of histamine H1 and H4 receptors in peripheral and central transmission of itch responses.

Similar content being viewed by others

References

  1. Lewis, T. The Blood Vessels of the Human Skin and Their Responses (Shaw and Sons, London, 1927).

    Google Scholar 

  2. Moessner, J. & Caca, K. Developments in the inhibition of gastric acid secretion. Eur. J. Clin. Invest. 35, 469–475 (2005).

    CAS  Google Scholar 

  3. Haas, H. & Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nature Rev. Neurosci. 4, 121–130 (2003).

    CAS  Google Scholar 

  4. Broide, D. H. et al. Evidence of ongoing mast cell and eosinophil degranulation in symptomatic asthma airway. J. Allergy Clin. Immunol. 88, 637–648 (1991).

    CAS  PubMed  Google Scholar 

  5. Casale, T. B. et al. Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with methacholine bronchial hyperresponsiveness. J. Clin. Invest. 79, 1197–1203 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jarjour, N., Calhoun, W., Schwartz, L. & Busse, W. Elevated bronchoalveolar lavage fluid histamine levels in allergic asthmatics are associated with increased airway obstruction. Am. Rev. Respir. Dis. 144, 83–87 (1991).

    CAS  PubMed  Google Scholar 

  7. Liu, M. C. et al. Evidence for elevated levels of histamine, prostaglandin D2, and other bronchoconstricting prostaglandins in the airways of subjects with mild asthma. Am. Rev. Resp. Dis. 142, 126–132 (1990).

    CAS  PubMed  Google Scholar 

  8. Wardlaw, A. J., Dunnette, S., Gleich, G. J., Collins, J. V. & Kay, A. B. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am. Rev. Respir. Dis. 137, 62–69 (1988).

    CAS  PubMed  Google Scholar 

  9. Wenzel, S. E., Fowler, A. A. 3rd & Schwartz, L. B. Activation of pulmonary mast cells by bronchoalveolar allergen challenge. In vivo release of histamine and tryptase in atopic subjects with and without asthma. Am. Rev. Respir. Dis. 137, 1002–1008 (1988).

    CAS  PubMed  Google Scholar 

  10. Johnson, H. H. Jr, DeOreo, G. A., Lascheid, W. P. & Mitchell, F. Skin histamine levels in chronic atopic dermatitis. J. Invest. Dermatol. 34, 237–238 (1960).

    CAS  PubMed  Google Scholar 

  11. Juhlin, L. Localization and content of histamine in normal and diseased skin. Acta Derm. Venereal. 47, 383–391 (1967).

    CAS  Google Scholar 

  12. Greaves, M. W. & Soendergaard, J. Urticaria pigmentosa and factitious urticaria. Arch. Dermatol. 101, 418–425 (1970).

    CAS  PubMed  Google Scholar 

  13. Kaplan, A. P., Horakova, Z. & Katz, S. I. Assessment of tissue fluid histamine levels in patients with urticaria. J. Allergy Clin. Immunol. 61, 350–354 (1978).

    CAS  PubMed  Google Scholar 

  14. Tuomisto, L., Kilpelainen, H. & Riekkinen, P. Histamine and histamine-N-methyltransferase in the CSF of patients with multiple sclerosis. Agents Actions 13, 255–257 (1983).

    CAS  PubMed  Google Scholar 

  15. Petersen, L. J. et al. Studies on mast cells and histamine release in psoriasis: the effect of ranitidine. Acta Derm. Venereol. 78, 190–193 (1998).

    CAS  PubMed  Google Scholar 

  16. Frewin, D. B., Cleland, L. G., Jonsson, J. R. & Robertson, P. W. Histamine levels in human synovial fluid. J. Rheumatol. 13, 13–14 (1986).

    CAS  PubMed  Google Scholar 

  17. Crisp, A. J. Studies of histamine in the rheumatoid joint. Rheumatol. Int. 4, 125–128 (1984).

    CAS  PubMed  Google Scholar 

  18. Liu, C., Wilson, S. J., Kuei, C. & Lovenberg, T. W. Comparison of human, mouse, rat, and guinea pig histamine H4 receptors reveals substantial pharmacological species variation. J. Pharmacol. Exp. Ther. 299, 121–130 (2001).

    CAS  PubMed  Google Scholar 

  19. Oda, T. et al. cDNA cloning and characterization of porcine histamine H4 receptor. Biochim. Biophy. Acta 1575, 135–138 (2002).

    CAS  Google Scholar 

  20. Oda, T. et al. Molecular cloning of monkey histamine H4 receptor. J. Pharmacol. Sci. 98, 319–322 (2005).

    CAS  PubMed  Google Scholar 

  21. Bakker, R. A., Timmerman, H. & Leurs, R. Histamine receptors: specific ligands, receptor biochemistry, and signal transduction. Clin. Allergy Immunol. 17, 27–64 (2002).

    CAS  PubMed  Google Scholar 

  22. Leurs, R., Bakker, R. A., Timmerman, H. & de Esch, I. J. P. The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nature Rev. Drug Discov. 4, 107–120 (2005).

    CAS  Google Scholar 

  23. de Esch, I. J. P., Thurmond, R. L., Jongejan, A. & Leurs, R. The histamine H4 receptor as a new therapeutic target for inflammation. Trends Pharmacol. Sci. 26, 462–469 (2005).

    CAS  PubMed  Google Scholar 

  24. Morse, K. L. et al. Cloning and characterization of a novel human histamine receptor. J. Pharmacol. Exp. Ther. 296, 1058–1066 (2001).

    CAS  PubMed  Google Scholar 

  25. Gutzmer, R. et al. Histamine H4 receptor stimulation suppresses IL-12p70 production and mediates chemotaxis in human monocyte-derived dendritic cells. J. Immunol. 174, 5224–5232 (2005).

    CAS  PubMed  Google Scholar 

  26. Inoue, I., Yanai, K., Watanabe, T. & Watanabe, T. Analysis of histamine H1 receptor deficient mice: role in locomotor activity and anaphylaxis. Taniguchi Symp. Brain Sci. 19, 139–149 (1996).

    CAS  Google Scholar 

  27. Ash, A. S. F. & Schild, J. O. Receptors mediating some action of histamine. Br. J. Pharmacol. Chemother. 27, 427–439 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Black, J. W., Duncan, W. A. M., Durant, C. J., Ganellin, C. R. & Parsons, E. M. Definition and antagonism of histamine H2-receptors. Nature 236, 385–390 (1972).

    CAS  PubMed  Google Scholar 

  29. Arrang, J. M., Garbarg, M. & Schwartz, J. C. Autoinhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302, 832–837 (1983).

    CAS  PubMed  Google Scholar 

  30. Lovenberg, T. W. et al. Cloning and functional expression of the human histamine H3 receptor. Mol. Pharmacol. 55, 1101–1107 (1999).

    CAS  PubMed  Google Scholar 

  31. Wijtmans, M., Leurs, R. & de Esch, I. Histamine H3 receptor ligands break ground in a remarkable plethora of therapeutic areas. Exp. Opin. Invest. Drugs 16, 967–985 (2007).

    CAS  Google Scholar 

  32. Teuscher, C. et al. Central histamine H3 receptor signaling negatively regulates susceptibility to autoimmune inflammatory disease of the CNS. Proc. Natl Acad. Sci. USA 104, 10146–10151 (2007).

    CAS  PubMed  Google Scholar 

  33. Oda, T., Morikawa, N., Saito, Y., Masuho, Y. & Matsumoto, S. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J. Biol. Chem. 275, 36781–36786 (2000).

    CAS  PubMed  Google Scholar 

  34. Liu, C. et al. Cloning and pharmacological characterization of a fourth histamine receptor (H4) expressed in bone marrow. Mol. Pharmacol. 59, 420–426 (2001).

    CAS  PubMed  Google Scholar 

  35. Clark, R. A. F., Gallin, J. I. & Kaplan, A. P. Selective eosinophil chemotactic activity of histamine. J. Exp. Med. 142, 1462–1476 (1975).

    CAS  PubMed  Google Scholar 

  36. Raible, D. G., Schulman, E. S., DiMuzio, J., Cardillo, R. & Post, T. J. Mast cell mediators prostaglandin-D2 and histamine activate human eosinophils. J. Immunol. 148, 3536–3542 (1992).

    CAS  PubMed  Google Scholar 

  37. Raible, D. G., Lenahan, T., Fayvilevich, Y., Kosinski, R. & Schulman, E. S. Pharmacologic characterization of a novel histamine receptor on human eosinophils. Am. J. Respir. Crit. Care Med. 149, 1506–1511 (1994).

    CAS  PubMed  Google Scholar 

  38. Lim, H. D. et al. Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J. Pharmacol. Exp. Ther. 314, 1310–1321 (2005). A detailed analysis of the interaction of known histamine receptor ligands with the H 4 receptor.

    CAS  PubMed  Google Scholar 

  39. Venable, J. D. & Thurmond, R. L. Development and chemistry of histamine H4 receptor ligands as potential modulators of inflammatory and allergic responses. Antiinflamm. Antiallergy Agents Med. Chem. 5, 307–322 (2006).

    CAS  Google Scholar 

  40. Nguyen, T. et al. Discovery of a novel member of the histamine receptor family. Mol. Pharmacol. 59, 427–433 (2001).

    CAS  PubMed  Google Scholar 

  41. Hough, L. B. Genomics meets histamine receptors: new subtypes, new receptors. Mol. Pharmacol. 59, 415–419 (2001).

    CAS  PubMed  Google Scholar 

  42. Nakayama, T. et al. Liver-expressed chemokine/CC chemokine ligand 16 attracts eosinophils by interacting with histamine H4 receptor. J. Immunol. 173, 2078–2083 (2004).

    CAS  PubMed  Google Scholar 

  43. Thurmond, R. L. et al. A potent and selective histamine H4 receptor antagonist with anti-inflammatory properties. J. Pharmacol. Exp. Ther. 309, 404–413 (2004). The identification of the first selective H 4 receptor antagonist, JNJ 7777120, that has become a key tool in exploring the function of the receptor.

    CAS  PubMed  Google Scholar 

  44. Varga, C. et al. Inhibitory effects of histamine H4 receptor antagonists on experimental colitis in the rat. Eur. J. Pharmacol. 522, 130–138 (2005).

    CAS  PubMed  Google Scholar 

  45. Dunford, P. J. et al. The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells. J. Immunol. 176, 7062–7070 (2006). A report demonstrating that the H 4 receptor is involved in preclinical models of asthma using H 4 receptor-deficient mice and selective antagonists.

    CAS  PubMed  Google Scholar 

  46. Dunford, P. J. et al. Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J. Allergy Clin. Immunol. 119, 176–183 (2007). A report on preclinical evidence demonstrating that the H 4 receptor mediates pruritus in mouse models using H 4 receptor-deficient mice and a selective antagonist.

    CAS  PubMed  Google Scholar 

  47. Coruzzi, G., Adami, M., Guaita, E., de Esch, I. J. P. & Leurs, R. Antiinflammatory and antinociceptive effects of the selective histamine H4-receptor antagonists JNJ7777120 and VUF6002 in a rat model of carrageenan-induced acute inflammation. Eur. J. Pharmacol. 563, 240–244 (2007).

    CAS  PubMed  Google Scholar 

  48. Takeshita, K., Sakai, K., Bacon, K. B. & Gantner, F. Critical role of histamine H4 receptor in leukotriene B4 production and mast cell-dependent neutrophil recruitment induced by zymosan in vivo. J. Pharmacol. Exp. Ther. 307, 1072–1078 (2003).

    CAS  PubMed  Google Scholar 

  49. Triggiani, M. et al. Differentiation of monocytes into macrophages induces the upregulation of histamine H1 receptor. J. Allergy Clin. Immunol. 119, 472–481 (2007).

    CAS  PubMed  Google Scholar 

  50. Dijkstra, D. et al. Histamine downregulates monocyte CCL2 production through the histamine H4 receptor. J. Allergy Clin. Immunol. 120, 300–307 (2007).

    CAS  PubMed  Google Scholar 

  51. Hofstra, C. L., Desai, P. J., Thurmond, R. L. & Fung-Leung, W.-P. Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J. Pharmacol. Exp. Ther. 305, 1212–1221 (2003).

    CAS  PubMed  Google Scholar 

  52. Lippert, U. et al. Human skin mast cells express H2 and H4, but not H3 receptors. J. Invest. Dermatol. 123, 116–123 (2004).

    CAS  PubMed  Google Scholar 

  53. Godot, V. et al. H4 Histamine receptor mediates optimal migration of mast cell precursors to CXCL12. J. Allergy Clin. Immunol. 120, 827–843 (2007).

    CAS  PubMed  Google Scholar 

  54. Fokkens, W. J. et al. Dynamics of mast cells in the nasal mucosa of patients with allergic rhinitis and non-allergic controls: a biopsy study. Clin. Exp. Allergy 22, 701–710 (1992).

    CAS  PubMed  Google Scholar 

  55. Slater, A., Smallman, L. A. & Drake-Lee, A. B. Increase in epithelial mast cell numbers in the nasal mucosa of patients with perennial allergic rhinitis. J. Laryngol. Otol. 110, 929–933 (1996).

    CAS  PubMed  Google Scholar 

  56. Garcia-Martin, E. et al. Severity of ulcerative colitis is associated with a polymorphism at diamine oxidase gene but not at histamine N-methyltransferase gene. World J. Gastroenterol. 12, 615–620 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lippert, U., Moller, A., Welker, P., Artuc, M. & Henz, B. M. Inhibition of cytokine secretion from human leukemic mast cells and basophils by H1- and H2-receptor antagonists. Exp. Dermatol. 9, 118–124 (2000).

    CAS  PubMed  Google Scholar 

  58. Bissonnette, E. Y. Histamine inhibits tumor necrosis factor a release by mast cells through H2 and H3 receptors. Am. J. Respir. Cell Mol. Biol. 14, 620–626 (1996).

    CAS  PubMed  Google Scholar 

  59. Lichtenstein, L. M. & Gillespie, E. Effects of the H1 and H2 antihistamines on allergic histamine release and its inhibition by histamine. J. Pharmacol. Exp. Ther. 192, 441–450 (1975).

    CAS  PubMed  Google Scholar 

  60. Ling, P. et al. Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation. Br. J. Pharmacol. 142, 161–171 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Buckland, K. F., Williams, T. J. & Conroy, D. M. Histamine induces cytoskeletal changes in human eosinophils via the H4 receptor. Br. J. Pharmacol. 140, 1117–1127 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wadee, A. A., Anderson, R. & Sher, R. In vitro effects of histamine on eosinophil migration. Int. Arch. Allergy Appl. Immunol. 63, 322–329 (1980).

    PubMed  Google Scholar 

  63. Clark, R. A. F., Sandler, J. A., Gallin, J. I. & Kaplan, A. P. Histamine modulation of eosinophil migration. J. Immunol. 118, 137–145 (1977).

    CAS  PubMed  Google Scholar 

  64. Pincus, S. H., DiNapoli, A.-M. & Schooley, W. R. Superoxide production by eosinophils: activation by histamine. J. Invest. Dermatol. 79, 53–57 (1982).

    CAS  PubMed  Google Scholar 

  65. Anwar, A. R. E. & Kay, A. B. H1-receptor dependence of histamine-induced enhancement of human eosinophil C3b rosettes. Clin. Exp. Immunol. 42, 196–199 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Eda, R., Sugiyama, H., Hopp, R. J., Bewtra, A. K. & Townley, R. G. Effect of loratadine on human eosinophil function in vitro. Ann. Allergy 71, 373–378 (1993).

    CAS  PubMed  Google Scholar 

  67. Vancheri, C. et al. The effect of fexofenadine on expression of intercellular adhesion molecule 1 and induction of apoptosis on peripheral eosinophils. Allergy Asthma Proc. 26, 292–298 (2005).

    CAS  PubMed  Google Scholar 

  68. Miyake, K., Ohmori, K., Ishii, A. & Karasawa, A. Inhibitory effect of olopatadine hydrochloride (KW-4679), a novel antiallergic drug, on peptide leukotriene release from human eosinophils. Allergol. Int. 50, 113–116 (2001).

    CAS  Google Scholar 

  69. Idzko, M. et al. Expression and function of histamine receptors in human monocyte-derived dendritic cells. J. Allergy Clin. Immunol. 109, 839–846 (2002).

    CAS  PubMed  Google Scholar 

  70. Renkl, A. et al. Distinct effects of sphingosine-1-phosphate, lysophosphatidic acid and histamine in human and mouse dendritic cells. Int. J. Mol. Med. 13, 203–209 (2004).

    CAS  PubMed  Google Scholar 

  71. Gutzmer, R. et al. Expression and function of histamine receptors 1 and 2 on human monocyte-derived dendritic cells. J. Allergy Clin. Immunol. 109, 524–531 (2002).

    CAS  PubMed  Google Scholar 

  72. Mazzoni, A. et al. Histamine inhibits IFN-α release from plasmacytoid dendritic cells. J. Immunol. 170, 2269–2273 (2003).

    CAS  PubMed  Google Scholar 

  73. Caron, G. et al. Histamine induces CD86 expression and chemokine production by human immature dendritic cells. J. Immunol. 166, 6000–6006 (2001).

    CAS  PubMed  Google Scholar 

  74. Mazzoni, A., Young, H. A., Spitzer, J. H., Visintin, A. & Segal, D. M. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J. Clin. Invest. 108, 1865–1873 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Theiner, G., Gessner, A. & Lutz, M. B. The mast cell mediator PGD2 suppresses IL-12 release by dendritic cells leading to TH2 polarized immune responses in vivo. Immunobiology 211, 463–472 (2006).

    CAS  PubMed  Google Scholar 

  76. Caron, G. et al. Histamine polarizes human dendritic cells into TH2 cell-promoting effector dendritic cells. J. Immunol. 167, 3682–3686 (2001).

    CAS  PubMed  Google Scholar 

  77. McIlroy, A. et al. Histamine and prostaglandin E2 up-regulate the production of TH2-attracting chemokines (CCL17 and CCL22) and down-regulate IFN-γ-induced CXCL10 production by immature human dendritic cells. Immunology 117, 507–516 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jutel, M. et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413, 420–425 (2001). This provides evidence that histamine and the H 1 and H 2 receptors modulate adaptive T-cell-mediated immune responses.

    CAS  PubMed  Google Scholar 

  79. Bryce, P. J. et al. The H1 histamine receptor regulates allergic lung responses. J. Clin. Invest. 116, 1624–1632 (2006). Gives asthma model data using H 1 receptor-deficient mice that suggests that the H 1 receptor is involved in the migration of antigen-specific T cells to the lung.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Morgan, R. K. et al. Histamine 4 receptor activation induces recruitment of FoxP3+ T cells and inhibits allergic asthma in a murine model. J. Immunol. 178, 8081–8089 (2007).

    CAS  PubMed  Google Scholar 

  81. Banu, Y. & Watanabe, T. Augmentation of antigen receptor-mediated responses by histamine H1 receptor signaling. J. Exp. Med. 189, 673–682 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Radvany, Z. et al. H1 histamine receptor antagonist inhibits constitutive growth of Jurkat T cells and antigen-specific proliferation of ovalbumin-specific murine T cells. Sem. Cancer Biol. 10, 41–45 (2000).

    CAS  Google Scholar 

  83. Nakane, H., Sonobe, Y., Watanabe, T. & Nakano, K. Histamine: Its novel role as an endogenous regulator of Con A-dependent T cell proliferation. Inflamm. Res. 53, 324–328 (2004).

    CAS  PubMed  Google Scholar 

  84. Rezai, A. R. et al. Histamine blocks interleukin 2 (IL-2) gene expression and regulates IL-2 receptor expression. Immunopharmacol. Immunotoxicol. 12, 345–362 (1990).

    CAS  PubMed  Google Scholar 

  85. Damle, N. K. & Gupta, S. Autologous mixed lymphocyte reaction in man. II. Histamine-induced suppression of the autologous mixed lymphocyte reaction by T-cell subsets defined with monoclonal antibodies. J. Clin. Immunol. 1, 241–249 (1981).

    CAS  Google Scholar 

  86. Kunzmann, S. et al. Histamine enhances TGF-β1-mediated suppression of TH2 responses. FASEB J. 17, 1089–1095 (2003).

    CAS  PubMed  Google Scholar 

  87. Dohlsten, M., Hedlund, G., Sjoegren, H. O. & Carlsson, R. Inhibitory effects of histamine on interleukin 2 and γ interferon production by different human T helper cell subsets. Scand. J. Immunol. 28, 727–733 (1988).

    CAS  PubMed  Google Scholar 

  88. Dohlsten, M., Sjoegren, H. O. & Carlsson, R. Histamine acts directly on human T cells to inhibit interleukin-2 and interferon-γ production. Cell. Immunol. 109, 65–74 (1987).

    PubMed  Google Scholar 

  89. Dohlsten, M., Sjoegren, H. O. & Carlsson, R. Histamine inhibits interferon-γ production via suppression of interleukin 2 synthesis. Cell. Immunol. 101, 493–501 (1986).

    CAS  PubMed  Google Scholar 

  90. Lagier, B., Lebel, B., Bousquet, J. & Pene, J. Different modulation by histamine of IL-4 and interferon-γ (IFN-γ) release according to the phenotype of human TH0, TH1 and TH2 clones. Clin. Exp. Immunol. 108, 545–551 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Osna, N., Elliott, K. & Khan, M. M. Regulation of interleukin-10 secretion by histamine in TH2 cells and splenocytes. Int. Immunopharmacol. 1, 85–96 (2001).

    CAS  PubMed  Google Scholar 

  92. Khan, M. M. Regulation of IL-4 and IL-5 secretion by histamine and PGE2. Adv. Exp. Med. Biol. 383, 35–42 (1995).

    CAS  PubMed  Google Scholar 

  93. Carlsson, R., Dohlsten, M. & Sjoegren, H. O. Histamine modulates the production of interferon-γ and interleukin-2 by mitogen-activated human mononuclear blood cells. Cell. Immunol. 96, 104–112 (1985).

    CAS  PubMed  Google Scholar 

  94. Krouwels, F. H. et al. Histamine affects interleukin-4, interleukin-5, and interferon-γ production by human T cell clones from the airways and blood. Am. J. Respir. Cell Mol. Biol. 18, 721–730 (1998).

    CAS  PubMed  Google Scholar 

  95. Poluektova, L. Y., Huggler, G. K., Patterson, E. B. & Khan, M. M. Involvement of protein kinase A in histamine-mediated inhibition of IL-2 mRNA expression in mouse splenocytes. Immunopharmacology 41, 77–87 (1999).

    CAS  PubMed  Google Scholar 

  96. Schmidt, J., Fleissner, S., Heimann-Weitschat, I., Lindstaedt, R. & Szelenyi, I. Histamine increases anti-CD3 induced IL-5 production of TH2-type T cells via histamine H2-receptors. Agents Actions 42, 81–85 (1994).

    CAS  PubMed  Google Scholar 

  97. Kobayashi, T., Koga, R., Banu, Y. & Watanabe, T. Immediate-type hypersensitivity and helper T cell function in histamine H1 receptor- and H2 receptor-deficient mice. Int. Congr. Series 1224, 395–396 (2001).

    CAS  Google Scholar 

  98. Sonobe, Y., Nakane, H., Watanabe, T. & Nakano, K. Regulation of Con A-dependent cytokine production from CD4+ and CD8+ T lymphocytes by autosecretion of histamine. Inflamm. Res. 53, 87–92 (2004).

    CAS  PubMed  Google Scholar 

  99. Gantner, F. et al. Histamine H4 and H2 receptors control histamine-induced interleukin-16 release from human CD8+ T cells. J. Pharmacol. Exp. Ther. 303, 300–307 (2002).

    CAS  PubMed  Google Scholar 

  100. Elenkov, I. J. et al. Histamine potently suppresses human IL-12 and stimulates IL-10 production via H2 receptors. J. Immunol. 161, 2586–2593 (1998).

    CAS  PubMed  Google Scholar 

  101. Van der Pouw Kraan, T. C. et al. Histamine inhibits the production of interleukin-12 through interaction with H2 receptors. J. Clin. Invest. 102, 1866–1873 (1998).

    Google Scholar 

  102. Dohlsten, M., Kalland, T., Sjoegren, H. O. & Carlsson, R. Histamine inhibits interleukin 1 production by lipopolysaccharide-stimulated human peripheral blood monocytes. Scand. J. Immunol. 27, 527–532 (1988).

    CAS  PubMed  Google Scholar 

  103. Hotermans, G., Bury, T. & Radermecker, M. F. Effect of histamine on tumor necrosis factor production by human monocytes. Int. Arch. Allergy Appl. Immunol. 95, 278–281 (1991).

    CAS  PubMed  Google Scholar 

  104. Takahashi, H. K. et al. Histamine downregulates CD14 expression via H2 receptors on human monocytes. Clin. Immunol. 108, 274–281 (2003).

    CAS  PubMed  Google Scholar 

  105. Takahashi, H. K. et al. Histamine inhibits lipopolysaccharide-induced interleukin (IL)-18 production in human monocytes. Clin. Immunol. 112, 30–34 (2004).

    CAS  PubMed  Google Scholar 

  106. Marone, G., Gentile, M., Petraroli, A., De Rosa, N. & Triggiani, M. Histamine-induced activation of human lung macrophages. Int. Arch. Allergy Immunol. 124, 249–252 (2001).

    CAS  PubMed  Google Scholar 

  107. Triggiani, M. et al. Histamine induces exocytosis and IL-6 production from human lung macrophages through interaction with H1 receptors. J. Immunol. 166, 4083–4091 (2001).

    CAS  PubMed  Google Scholar 

  108. Ehringer, W. D., Edwards, M. J. & Miller, F. N. Mechanisms of a-thrombin, histamine, and bradykinin induced endothelial permeability. J. Cell. Physiol. 167, 562–569 (1996).

    CAS  PubMed  Google Scholar 

  109. Rotrosen, D. & Gallin, J. I. Histamine type I receptor occupancy increases endothelial cytosolic calcium, reduces F-actin and promotes albumin diffusion across cultured endothelial monolayers. J. Cell Biol. 103, 2379–2387 (1986).

    CAS  PubMed  Google Scholar 

  110. Zabner, J. et al. Histamine alters E-cadherin cell adhesion to increase human airway epithelial permeability. J. Appl. Physiol. 95, 394–401 (2003).

    CAS  PubMed  Google Scholar 

  111. Takeuchi, K., Kishioka, C., Ishinaga, H., Sakakura, Y. & Majima, Y. Histamine alters gene expression in cultured human nasal epithelial cells. J. Allergy Clin. Immunol. 107, 310–314 (2001).

    CAS  PubMed  Google Scholar 

  112. Molet, S., Gosset, P., Lassalle, P., Czarlewski, W. & Tonnel, A. B. Inhibitory activity of loratadine and descarboxyethoxyloratadine on histamine-induced activation of endothelial cells. Clin. Exp. Allergy 27, 1167–1174 (1997).

    CAS  PubMed  Google Scholar 

  113. Lorant, D. E. et al. Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J. Cell Biol. 115, 223–234 (1991).

    CAS  PubMed  Google Scholar 

  114. Hattori, R., Hamilton, K. K., Fugate, R. D., McEver, R. P. & Sims, P. J. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J. Biol. Chem. 264, 7768–7771 (1989).

    CAS  PubMed  Google Scholar 

  115. Yao, L., Pan, J., Setiadi, H., Patel, K. D. & McEver, R. P. Interleukin 4 or oncostatin M induces a prolonged increase in P-selectin mRNA and protein in human endothelial cells. J. Exp. Med. 184, 81–92 (1996).

    CAS  PubMed  Google Scholar 

  116. Wagner, M. C., Eckman, J. R. & Wick, T. M. Histamine increases sickle erythrocyte adherence to endothelium. Br. J. Haematol. 132, 512–522 (2006).

    CAS  PubMed  Google Scholar 

  117. Geng, J. G. et al. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343, 757–760 (1990).

    CAS  PubMed  Google Scholar 

  118. Jones, D. A., Abbassi, O., McIntire, L. V., McEver, R. P. & Smith, C. W. P-selectin mediates neutrophil rolling on histamine-stimulated endothelial cells. Biophys. J. 65, 1560–1569 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Doukas, J., Shepro, D. & Hechtman, H. B. Vasoactive amines directly modify endothelial cells to affect polymorphonuclear leukocyte diapedesis in vitro. Blood 69, 1563–1569 (1987).

    CAS  PubMed  Google Scholar 

  120. Delneste, Y. et al. Histamine induces IL-6 production by human endothelial cells. Clin. Exp. Immunol. 98, 344–349 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Utgaard, J. O., Jahnsen, F. L., Bakka, A., Brandtzaeg, P. & Haraldsen, G. Rapid secretion of prestored interleukin 8 from Weibel-Palade bodies of microvascular endothelial cells. J. Exp. Med. 188, 1751–1756 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. McIntyre, T. M., Zimmerman, G. A., Satoh, K. & Prescott, S. M. Cultured endothelial cells synthesize both platelet-activating factor and prostacyclin in response to histamine, bradykinin, and adenosine triphosphate. J. Clin. Invest. 76, 271–280 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Talreja, J., Kabir, M. H., Filla, M. B., Stechschulte, D. J. & Dileepan, K. N. Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall components. Immunology 113, 224–233 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Mueller, T. et al. Functional characterization of histamine receptor subtypes in a human bronchial epithelial cell line. Int. J. Mol. Med. 18, 925–931 (2006).

    CAS  Google Scholar 

  125. Takizawa, H. et al. Histamine activates bronchial epithelial cells to release inflammatory cytokines in vitro. Int. Arch. Allergy Immunol. 108, 260–267 (1995).

    CAS  PubMed  Google Scholar 

  126. Noah, T. L., Paradiso, A. M., Madden, M. C., McKinnon, K. P. & Devlin, R. B. The response of a human bronchial epithelial cell line to histamine: intracellular calcium changes and extracellular release of inflammatory mediators. Am. J. Respir. Cell Mol.Biol. 5, 484–492 (1991).

    CAS  PubMed  Google Scholar 

  127. Aoki, Y., Qiu, D., Zhao, G. H. & Kao, P. N. Leukotriene B4 mediates histamine induction of NF-κB and IL-8 in human bronchial epithelial cells. Am. J. Physiol. 274, L1030–L1039 (1998).

    CAS  PubMed  Google Scholar 

  128. Matsubara, M., Ohmori, K. & Hasegawa, K. Histamine H1 receptor-stimulated interleukin 8 and granulocyte macrophage colony-stimulating factor production by bronchial epithelial cells requires extracellular signal-regulated kinase signaling via protein kinase C. Int. Arch. Allergy Immunol. 139, 279–293 (2006).

    CAS  PubMed  Google Scholar 

  129. Vignola, A. M. et al. Inhibitory activity of loratadine and descarboethoxyloratadine on expression of ICAM-1 and HLA-DR by nasal epithelial cells. Allergy 50, 200–203 (1995).

    CAS  PubMed  Google Scholar 

  130. Braman, S. S. The global burden of asthma. Chest 130, 4S–12S (2006).

    PubMed  Google Scholar 

  131. Busse, W. W. & Lemanske, R. F. Asthma. N. Engl. J. Med. 344, 350–362 (2001).

    CAS  PubMed  Google Scholar 

  132. Kay, A. B. Asthma and inflammation. J. Allergy Clin. Immunol. 87, 893–910 (1991).

    CAS  PubMed  Google Scholar 

  133. Bochner, B. S., Undem, B. J. & Lichtenstein, L. M. Immunological aspects of allergic asthma. Annu. Rev. Immunol. 12, 295–335 (1994).

    CAS  PubMed  Google Scholar 

  134. Bousquet, J., Jeffery, P. K., Busse, W. W., Johnson, M. & Vignola, A. M. Asthma from bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care Med. 161, 1720–1745 (2000).

    CAS  PubMed  Google Scholar 

  135. Pascual, R. M. & Peters, S. P. Airway remodeling contributes to the progressive loss of lung function in asthma: an overview. J. Allergy Clin. Immunol. 116, 477–486 (2005).

    PubMed  Google Scholar 

  136. Barnes, P. J. Current therapies for asthma. Promise and limitations. Chest 111, 17S–26S (1997).

    CAS  PubMed  Google Scholar 

  137. O'Byrne, P. M. & Parameswaran, K. Pharmacological management of mild or moderate persistent asthma. Lancet 368, 794–803 (2006).

    CAS  PubMed  Google Scholar 

  138. Popa, V. T. Bronchodilating activity of an H1 blocker, chlorpheniramine. J. Allergy Clin. Immunol. 59, 54–63 (1977).

    CAS  PubMed  Google Scholar 

  139. Popa, V. T. Effect of an H1 blocker, chlorpheniramine, on inhalation tests with histamine and allergen in allergic asthma. Chest 78, 442–451 (1980).

    CAS  PubMed  Google Scholar 

  140. Leopold, J. D., Hartley, J. P. & Smith, A. P. Effects of oral H1 and H2 receptor antagonists in asthma. Br. J. Clin. Pharmacol. 8, 249–251 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Van Ganse, E. et al. Effects of antihistamines in adult asthma: a meta-analysis of clinical trials. Eur. Respir. J. 10, 2216–2224 (1997). A detailed retrospective study of clinical trails in asthma using H 1 receptor antagonists.

    CAS  PubMed  Google Scholar 

  142. Hamid, M., Rafferty, P. & Holgate, S. The inhibitory effect of terfenadine and flurbiprofen on early and late-phase bronchoconstriction following allergen challenge in atopic asthma. Clin. Exp. Allergy 20, 261–267 (1990).

    CAS  PubMed  Google Scholar 

  143. Ekstrom, T., Osterman, K. & Zetterstrom, O. Lack of effect of loratadine on moderate to severe asthma. Ann. Allergy Asthma Immunol. 75, 287–289 (1995).

    CAS  PubMed  Google Scholar 

  144. Taytard, A., Beaumont, D., Pujet, J. C., Sapene, M. & Lewis, P. J. Treatment of bronchial asthma with terfenadine; a randomized controlled trial. Br. J. Clin. Pharmacol. 24, 743–746 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bruttmann, G., Pedrali, P., Arendt, C. & Rihoux, J. P. Protective effect of cetirizine in patients suffering from pollen asthma. Ann. Allergy 64, 224–228 (1990).

    CAS  PubMed  Google Scholar 

  146. Bousquet, J. et al. Double-blind multicenter study of cetirizine in grass-pollen-induced asthma. Ann. Allergy 65, 504–508 (1990).

    CAS  PubMed  Google Scholar 

  147. Corren, J. et al. Efficacy and safety of loratadine plus pseudoephedrine in patients with seasonal allergic rhinitis and mild asthma. J. Allergy Clin. Immunol. 100, 781–788 (1997).

    CAS  PubMed  Google Scholar 

  148. Reicin, A. et al. Montelukast, a leukotriene receptor antagonist, in combination with loratadine, a histamine receptor antagonist, in the treatment of chronic asthma. Arch. Intern. Med. 160, 2481–2488 (2000).

    CAS  PubMed  Google Scholar 

  149. Ones, U. & Tamay, Z. New oral antihistamines in pediatrics and safety of antihistamines in children. Curr. Med. Chem. Antiinflamm. Antiallergy Agents 4, 495–506 (2005).

    CAS  Google Scholar 

  150. Busse, W. W. & Swenson, C. A. The relationship between plasma histamine concentrations and bronchial obstruction to antigen challenge in allergic rhinitis. J. Allergy Clin. Immunol. 84, 658–666 (1989).

    CAS  PubMed  Google Scholar 

  151. Tamaoki, J., Nakata, J., Takeyama, K., Chiyotani, A. & Konno, K. Histamine H2 receptor-mediated airway goblet cell secretion and its modulation by histamine-degrading enzymes. J. Allergy Clin. Immunol. 99, 233–238 (1997).

    CAS  PubMed  Google Scholar 

  152. Alving, K., Matran, R., Lacroix, J. S. & Lundberg, J. M. Capsaicin and histamine antagonist-sensitive mechanisms in the immediate allergic reaction of pig airways. Acta Physiol. Scand. 138, 49–60 (1990).

    CAS  PubMed  Google Scholar 

  153. Nogrady, S. G. & Hahn, A. G. H2-receptor blockade and exercise-induced asthma. Br. J. Clin. Pharmacol. 18, 795–797 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Bryce, P. J., Geha, R. & Oettgen, H. C. Desloratadine inhibits allergen-induced airway inflammation and bronchial hyperresponsiveness and alters T-cell responses in murine models of asthma. J. Allergy Clin. Immunol. 112, 149–158 (2003). A study in a mouse asthma model demonstrating that dosing an H 1 receptor antagonist before sensitization can inhibit airway inflammation to subsequent airway challenge.

    CAS  PubMed  Google Scholar 

  155. Blumchen, K. et al. Oral administration of desloratadine prior to sensitization prevents allergen-induced airway inflammation and hyper-reactivity in mice. Clin. Exp. Allergy 34, 1124–1130 (2004).

    CAS  PubMed  Google Scholar 

  156. Miyamoto, K. et al. Histamine type 1 receptor deficiency reduces airway inflammation in a murine asthma model. Int. Arch. Allergy Immunol. 140, 215–222 (2006).

    CAS  PubMed  Google Scholar 

  157. Gelfand, E. W., Cui, Z.-H., Takeda, K., Kanehiro, A. & Joetham, A. Fexofenadine modulates T-cell function, preventing allergen-induced airway inflammation and hyperresponsiveness. J. Allergy Clin. Immunol. 110, 85–95 (2002). A study in a mouse asthma model suggesting that high doses of an H 1 receptor antagonist can modulate airway inflammation when dosed around antigen challenge.

    CAS  PubMed  Google Scholar 

  158. Gelfand, E. W., Cui, Z.-H., Takeda, K., Kanehiro, A. & Joetham, A. Effects of fexofenadine on T-cell function in a murine model of allergen-induced airway inflammation and hyperresponsiveness. J. Allergy Clin. Immunol. 112, S89–S95 (2003).

    CAS  PubMed  Google Scholar 

  159. Xu, X. et al. Neutrophil histamine contributes to inflammation in mycoplasma pneumonia. J. Exp. Med. 203, 2907–2917 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ring, J. Plasma histamine concentrations in atopic eczema. Clin. Allergy 13, 545–552 (1983).

    CAS  PubMed  Google Scholar 

  161. Phanuphak, P., Schocket, A. L., Arroyave, C. M. & Kohler, P. F. Skin histamine in chronic urticaria. J. Allergy Clin. Immunol. 65, 371–375 (1980).

    CAS  PubMed  Google Scholar 

  162. Schmelz, M., Schmidt, R., Bickel, A., Handwerker, H. O. & Torebjork, H. E. Specific C-receptors for itch in human skin. J. Neurosci. 17, 8003–8008 (1997). The first identification of C-afferent fibres as the itch sensing nerves in human skin.

    CAS  PubMed  Google Scholar 

  163. Andrew, D. & Craig, A. D. Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nature Neurosci. 4, 72–77 (2001). The first report of the existence of specific spinothalamic neurons that transmit itch signals in response to histamine applied to skin.

    CAS  PubMed  Google Scholar 

  164. Han, S.-K., Mancino, V. & Simon, M. I. Phospholipase Cβ 3 mediates the scratching response activated by the histamine H1 receptor on C-fiber nociceptive neurons. Neuron 52, 691–703 (2006).

    CAS  PubMed  Google Scholar 

  165. Nicolson, T. A., Bevan, S. & Richards, C. D. Characterisation of the calcium responses to histamine in capsaicin-sensitive and capsaicin-insensitive sensory neurones. Neuroscience 110, 329–338 (2002).

    CAS  PubMed  Google Scholar 

  166. Nakaya, M., Takeuchi, N. & Kondo, K. Immunohistochemical localization of histamine receptor subtypes in human inferior turbinates. Ann. Otol. Rhinol. Laryngol. 113, 552–557 (2004).

    PubMed  Google Scholar 

  167. Breunig, E. et al. Histamine excites neurones in the human submucous plexus through activation of H1, H2, H3 and H4 receptors. J. Physiol. 583, 731–742 (2007). The first evidence for H 4 receptor activity on peripheral neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Paus, R., Schmelz, M., Biro, T. & Steinhoff, M. Frontiers in pruritus research: scratching the brain for more effective itch therapy. J. Clin. Invest. 116, 1174–1185 (2006). A comprehensive review of the mediators and mechanisms involved in pruritus.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Williams, R. M., Beinenstock, J. & Stead, R. H. Mast cells: the neuroimmune connection. Chem. Immunol. 61, 208–235 (1995).

    CAS  PubMed  Google Scholar 

  170. Hagforsen, E., Nordlind, K. & Michaëlsson, G. Skin nerve fibres and their contacts with mast cells in patients with palmoplantar pustulosis. Arch. Dermatol. Res. 292, 269–274 (2000).

    CAS  PubMed  Google Scholar 

  171. Asboe-Hansen, G. A survey of the normal and pathological occurrence of mucinous substances and mast cells in the dermal connective tissue in man. Acta Derm. Venereal. 30, 338–347 (1950).

    CAS  Google Scholar 

  172. Jarvikallio, A., Naukkarinen, A., Harvima, I. T., Aalto, M. L. & Horsmanheimo, M. Quantitative analysis of tryptase- and chymase-containing mast cells in atopic dermatitis and nummular eczema. Br. J. Dermatol. 136, 871–877 (1997).

    CAS  PubMed  Google Scholar 

  173. Steinhoff, M. et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J. Neurosci. 23, 6176–6180 (2003).

    CAS  PubMed  Google Scholar 

  174. Kaplan, A. P. Chronic urticaria: pathogenesis and treatment. J. Allergy Clin. Immunol. 114, 465–474 (2004).

    CAS  PubMed  Google Scholar 

  175. Hagermark, O. Peripheral and central mediators of itch. Skin Pharmacol. 5, 1–8 (1992).

    CAS  PubMed  Google Scholar 

  176. Wahlgren, C. F., Hagermark, O. & Bergstrom, R. The antipruritic effect of a sedative and a non-sedative antihistamine in atopic dermatitis. Br. J. Dermatol. 122, 545–551 (1990).

    CAS  PubMed  Google Scholar 

  177. Yanai, K. & Tashiro, M. The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol. Ther. 113, 1–15 (2007).

    CAS  PubMed  Google Scholar 

  178. Sakurada, S. et al. Intrathecal histamine induces spinally mediated behavioral responses through tachykinin NK1 receptors. Pharmacol. Biochem. Behav. 74, 487–493 (2003).

    CAS  PubMed  Google Scholar 

  179. Behrendt, H. & Ring, J. Histamine, antihistamines and atopic eczema. Clin. Exp. Allergy 20, 25–30 (1990).

    PubMed  Google Scholar 

  180. Krause, L. & Shuster, S. Mechanism of action of antipruritic drugs. Br. Med. J. 287, 1199–1200 (1983). A heavily cited study, suggesting that first-generation antihistamines diminish itching primarily through a sedative effect.

    CAS  Google Scholar 

  181. Munday, J. et al. Chlorpheniramine is no more effective than placebo in relieving the symptoms of childhood atopic dermatitis with a nocturnal itching and scratching component. Dermatology 205, 40–45 (2002).

    CAS  PubMed  Google Scholar 

  182. Doherty, V. et al. Treatment of itching in atopic eczema with antihistamines with a low sedative profile. Br. J. Med. 298, 96 (1989).

    CAS  Google Scholar 

  183. Imaizumi, A., Kawakami, T., Murakami, F., Soma, Y. & Mizoguchi, M. Effective treatment of pruritus in atopic dermatitis using H1 antihistamines (second-generation antihistamines): changes in blood histamine and tryptase levels. J. Dermatol. Sci. 33, 23–29 (2003).

    CAS  PubMed  Google Scholar 

  184. Berth-Jones, J. & Graham-Brown, R. A. Failure of terfenadine in relieving the pruritus of atopic dermatitis. Br. J. Dermatol. 121, 635–637 (1989).

    CAS  PubMed  Google Scholar 

  185. Klein, P. A. & Clark, R. A. F. An evidence-based review of the efficacy of antihistamines in relieving pruritus in atopic dermatitis. Arch. Dermatol. 135, 1522–1525 (1999). A detailed retrospective study of clinical trails in pruritus using H 1 receptor antagonists.

    CAS  PubMed  Google Scholar 

  186. Sharpe, G. R. & Shuster, S. In dermographic urticaria H2 receptor antagonists have a small but therapeutically irrelevant additional effect compared with H1 antagonists alone. Br. J. Dermatol. 129, 575–579 (1993).

    CAS  PubMed  Google Scholar 

  187. Bell, J. K., McQueen, D. S. & Rees, J. L. Involvement of histamine H4 and H1 receptors in scratching induced by histamine receptor agonists in BalbC mice. Br. J. Pharmacol. 142, 374–380 (2004). The first evidence from preclinical models in mice that pruritus could be H 4 receptor mediated.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Inagaki, N. et al. Participation of histamine H1 and H2 receptors in passive cutaneous anaphylaxis-induced scratching behavior in ICR mice. Eur. J. Pharmacol. 367, 361–371 (1999).

    CAS  PubMed  Google Scholar 

  189. Sugimoto, Y., Nakamura, Y., Alejandra Hossen, M., Watanabe, T. & Kamei, C. Evaluation of the effects of anti-pruritic drugs on scratch responses using histamine H1 receptor-deficient mice. Eur. J. Pharmacol. 470, 113–116 (2003).

    CAS  PubMed  Google Scholar 

  190. Akamatsu, H. et al. The effect of fexofenadine on pruritus in a mouse model (HR-ADf) of atopic dermatitis. J. Int. Med. Res. 34, 495–504 (2006).

    CAS  PubMed  Google Scholar 

  191. Hossen, M. A. et al. Effect of loratadine on mouse models of atopic dermatitis associated pruritus. Int. Immunopharmacol. 5, 1331–1336 (2005).

    CAS  PubMed  Google Scholar 

  192. Cuss, F. M. Beyond the histamine receptor: effect of antihistamines on mast cells. Clin. Exp. Allergy 29, 54–59 (1999).

    CAS  PubMed  Google Scholar 

  193. Sharif, N. A., Xu, S. X., Miller, S. T., Gamache, D. A. & Yanni, J. M. Characterization of the ocular antiallergic and antihistaminic effects of olopatadine (AL-4943A), a novel drug for treating ocular allergic diseases. J. Pharmacol. Exp. Ther. 278, 1252–1261 (1996).

    CAS  PubMed  Google Scholar 

  194. Sugata, Y. et al. Histamine H4 receptor agonists have more activities than H4 agonism in antigen-specific human T-cell responses. Immunology 121, 266–275 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Gantz, I. et al. Molecular cloning of the human histamine H2 receptor. Biochem. Biophys. Res. Commun. 178, 1386–1392 (1991).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin L. Thurmond.

Ethics declarations

Competing interests

R.L.T. and P.J.D. are employed by Johnson & Johnson.

Related links

Related links

DATABASES

IUPHAR Receptor Database

H1

H2

H3

H4

OMIM

Asthma

atopic dermatitis

multiple sclerosis

psoriatic arthritis

rheumatoid arthritis

Glossary

Mast cell

A cell found in connective tissue that contains numerous basophilic granules and releases substances such as leukotrienes and histamine in response to various stimuli, such as bacterial products or specific antigen binding to surface immunoglobulin E.

Wheal and flare

The characteristic immediate reaction to an injected allergen in a skin test, in which an irregular blanched wheal appears, surrounded by an area of redness (flare). First described by Lewis in 1927 and attributed as a response to histamine.

Antihistamines

Drugs that block the action of histamine and most commonly used to designate histamine H1 receptor antagonists. In general, first-generation antihistamines are classified as having CNS activity; second-generation antihistamines have little or no activity in the CNS.

Chronic urticaria

An inflammatory skin condition associated with chronic pruritus. Often the result of an autoimmune reaction to self-immunoglobulin E that causes degranulation of mast cells.

Monoamine GPCR

A monoamine G-protein-coupled receptor (GPCR) is a receptor whose ligand contains one amino acid; for example, serotonin, dopamine, noradrenaline or histamine.

Eosinophil

A white blood cell with a physiological role in the destruction of parasites. Eosinophils are strongly implicated in allergic inflammation with an ability to release an array of cytotoxic mediators.

Dendritic cell

An antigen-presenting leukocyte that is found in the skin, mucosa and lymphoid tissues and initiates a primary immune response by activating T lymphocytes and secreting cytokines.

Monocyte

A circulating, phagocytic white blood cell with the ability to release numerous inflammatory cytokines, such as tumour necrosis factor-α (TNFα) and interleukin 6. Monocytes can differentiate into tissue macrophages.

T-cell

A lymphocyte that matures in the thymus and has the ability to recognize specific peptide antigens through the receptors on its cell surface. Subdivided into CD4+ (T-helper) and CD8+ (T-cytotoxic) T cells.

Chemotaxis

The characteristic movement of a cell along a chemical concentration gradient formed by a chemokine or other chemotactic substance.

TH2 cell

A CD4+ T-helper cell that is strongly implicated in the pathogenesis of allergic disease.

Endothelial and epithelial cells

Endothelial cells line the closed spaces of the body such as the inside of blood vessels, lymphatic vessels, the heart and body cavities. By contrast, epithelial cells make up the outside layer of cells that covers all open surfaces of the body including the skin and mucous membranes.

Diapedesis

The movement or passage of blood cells, especially white blood cells, through intact capillary walls into surrounding body tissue.

Airway mucosa

A membrane lining the respiratory tract and forming an interface with air. Also contains glands that secrete mucus.

Bronchial hyperresponsiveness

A symptom of asthma: an increase in sensitivity to airway-narrowing stimuli. This is often assessed experimentally, in humans and animals, by the measurement of airway function after inhalation of methacholine or histamine.

Sensitization

The immunization phase in experimental immune models in which animals are rendered reactive to specific antigens by administration of the antigen, normally in conjunction with an adjuvant. Specific T-cell and B-cell antibody responses ensue.

TH2 cytokines

Proteins such as interleukin 4 (IL4), IL5 and IL13 that are produced by TH2 cells and have a central role in key allergic responses, such as immunoglobulin E production, eosinophilia, mucus production and bronchial hyperresponsiveness.

Challenge

The effector phase in experimental immune models in which animals previously sensitized to a specific antigen are exposed to the antigen to cause 'disease'. Antigen is normally delivered to the site where the disease response is to be measured, for example, the lung to cause an asthma-like response.

C-fibres

Unmyelinated, slow-conducting nerve fibres identified as sensors and transmitters of pruritic signals.

Pruritogenic mediator

A stimulus or chemical mediator, such as histamine, known to cause itch.

Immunoglobulin E

(IgE). A class of immunoglobulin involved in allergic responses. IgE bound to mast cells can recognize allergens and cause their degranulation and activation.

Tachyphylaxis

The loss of response to an agonist or antagonist following repeated or prolonged exposure, most often due to downregulation or alteration of the specific receptor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thurmond, R., Gelfand, E. & Dunford, P. The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Discov 7, 41–53 (2008). https://doi.org/10.1038/nrd2465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2465

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing