Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of Notch in tumorigenesis: oncogene or tumour suppressor?

Key Points

  • Signalling between Notch receptors and ligands influences many differentiation processes and cell-fate decisions during embryonic and postnatal development.

  • Stem-cell maintenance, binary cell-fate decisions and induction of differentiation are three main functions of Notch signalling in self-renewing tissues.

  • Notch can function as an oncogene. Aberrant expression of the dominant active cytoplasmic domain of Notch receptors in haematopoietic cells because of chromosomal translocation or viral integrations causes T-cell leukaemias in mice and humans.

  • Notch needs to cooperate with oncoproteins that can override the G1–S checkpoint in order to cause cancer.

  • Notch receptors and ligands are re-expressed in certain human carcinomas, which is compatible with the ability of Notch to maintain stem cells or precursor cells in an undifferentiated state.

  • Recent data show that Notch1 can also function as a tumour suppressor in mouse skin by inducing Waf1 and repressing Shh and Wnt signalling.

  • Notch has two faces; one that promotes and the other that suppresses tumorigenesis. Which of the two faces is shown is dependent on the cellular context and the crosstalk with other signal-transduction pathways.

Abstract

Notch signalling participates in the development of multicellular organisms by maintaining the self-renewal potential of some tissues and inducing the differentiation of others. Involvement of Notch in cancer was first highlighted in human T-cell leukaemia, fuelling the notion that aberrant Notch signalling promotes tumorigenesis. However, there is mounting evidence that Notch signalling is not exclusively oncogenic. It can instead function as a tumour suppressor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notch receptor and ligands.
Figure 2: Notch signalling.
Figure 3: Notch function.
Figure 4: Chromosomal translocation and proviral integration into Notch genes cause tumours.
Figure 5: Notch1 function in mouse skin.
Figure 6: Notch function in cervical cancer.

Similar content being viewed by others

References

  1. Morgan, T. H. The theory of the gene. Am. Nat. 51, 513–544 (1917).

    Article  Google Scholar 

  2. Wharton, K. A. et al. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43, 567–581 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Kidd, S., Kelley, M. R. & Young, M. W. Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol. Cell Biol. 6, 3094–3108 (1986). References 2 and 3 are classic papers that describe the cloning of the Drosophila Notch gene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blaumueller, C. M. et al. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA 95, 8108–8112 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. del Amo, F. F. et al. Cloning, analysis, and chromosomal localization of Notch-1, a mouse homolog of Drosophila Notch. Genomics 15, 259–264 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Weinmaster, G., Roberts, V. J. & Lemke, G. Notch2: a second mammalian Notch gene. Development 116, 931–941 (1992).

    CAS  PubMed  Google Scholar 

  8. Lardelli, M. & Lendahl, U. Motch A and motch B: two mouse Notch homologues coexpressed in a wide variety of tissues. Exp. Cell Res. 204, 364–372 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Lardelli, M., Dahlstrand, J. & Lendahl, U. The novel Notch homologue mouse Notch 3 lacks specific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium. Mech. Dev. 46, 123–136 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Uyttendaele, H. et al. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122, 2251–2259 (1996).

    CAS  PubMed  Google Scholar 

  11. Bettenhausen, B. et al. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407–2418 (1995).

    CAS  PubMed  Google Scholar 

  12. Dunwoodie, S. L. et al. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124, 3065–3076 (1997).

    CAS  PubMed  Google Scholar 

  13. Shutter, J. R. et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev. 14, 1313–1318 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindsell, C. E. et al. Jagged: a mammalian ligand that activates Notch1. Cell 80, 909–917 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Shawber, C. et al. Jagged2: a serrate-like gene expressed during rat embryogenesis. Dev. Biol. 180, 370–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Kao, H. Y. et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 12, 2269–2277 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsieh, J. J. et al. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc. Natl Acad. Sci. USA 96, 23–28 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morel, V. et al. Transcriptional repression by suppressor of hairless involves the binding of a hairless-dCtBP complex in Drosophila. Curr. Biol. 11, 789–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, S. et al. SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC to facilitate NotchIC function. Mol. Cell Biol. 20, 2400–2410 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurooka, H. & Honjo, T. Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J. Biol. Chem. 275, 17211–11720 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Oswald, F. et al. p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol. Cell Biol. 21, 7761–7774 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fryer, C. J. et al. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev. 16, 1397–1411 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bailey, A. M. & Posakony, J. W. Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev. 9, 2609–2622 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Davis, R. L. & Turner, D. L. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 20, 8342–8357 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Rangarajan, A. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20, 3427–3436 (2001). This report shows that NOTCH1 induces numerous early differentiation markers and identifies the gene that encodes WAF1 as a direct transcriptional target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Panin, V. M. & Irvine, K. D. Modulators of Notch signaling. Semin. Cell Dev. Biol. 9, 609–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Irvine, K. D. Fringe, Notch, and making developmental boundaries. Curr. Opin. Genet. Dev. 9, 434–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Varnum-Finney, B. et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood 91, 4084–4091 (1998).

    CAS  PubMed  Google Scholar 

  29. Jaleco, A. C. et al. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J. Exp. Med. 194, 991–1002 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmitt, T. M. & Zuniga-Pflucker, J. C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Haltiwanger, R. S. & Stanley, P. Modulation of receptor signaling by glycosylation: fringe is an O-fucose-β1, 3-N-acetylglucosaminyltransferase. Biochim. Biophys. Acta 1573, 328–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Martinez Arias, A., Zecchini, V. & Brennan, K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr. Opin. Genet. Dev. 12, 524–533 (2002).

    Article  PubMed  Google Scholar 

  33. Brennan, K. & Gardner, P. Notching up another pathway. Bioessays 24, 405–410 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lewis, J. Neurogenic genes and vertebrate neurogenesis. Curr. Opin. Neurobiol. 6, 3–10 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Lewis, J. Notch signalling and the control of cell fate choices in vertebrates. Semin. Cell Dev. Biol. 9, 583–589 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Chitnis, A. et al. Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375, 761–766 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Henrique, D. et al. Maintenance of neuroepithelial progenitor cells by Delta–Notch signalling in the embryonic chick retina. Curr. Biol. 7, 661–670 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Jones, P. et al. Stromal expression of Jagged 1 promotes colony formation by fetal hematopoietic progenitor cells. Blood 92, 1505–1511 (1998).

    CAS  PubMed  Google Scholar 

  39. Kimble, J. & Simpson, P. The LIN-12/Notch signaling pathway and its regulation. Annu. Rev. Cell Dev. Biol. 13, 333–361 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M. E. Notch signaling. Science 268, 225–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Morrison, S. J. et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101, 499–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Pear, W. S. & Radtke, F. Notch signaling in lymphopoiesis. Semin. Immunol. 15, 69–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Lowell, S. et al. Stimulation of human epidermal differentiation by delta–notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 10, 491–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Reynolds, T. C., Smith, S. D. & Sklar, J. Analysis of DNA surrounding the breakpoints of chromosomal translocations involving the beta T cell receptor gene in human lymphoblastic neoplasms. Cell 50, 107–117 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991). This paper identified the first human homologue of the Drosophila Notch gene and its truncated form in the chromosomal translocation t(7;9)(q34;q34. 3) from a human T-lymphoblastic leukaemia. Furthermore, it is the first paper to indicate that aberrant expression of the cytoplasmic part of the human NOTCH1 gene causes T-cell neoplasm.

    Article  CAS  PubMed  Google Scholar 

  46. Pear, W. S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996). This is the first report showing the oncogenic potential of the truncated human NOTCH1 gene in the haematopoietic compartment using a mouse model.

    Article  CAS  PubMed  Google Scholar 

  47. Pui, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Izon, D. J. et al. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity 16, 231–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Aster, J. C. et al. Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Mol. Cell Biol. 20, 7505–7015 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Girard, L. et al. Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev. 10, 1930–1944 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Feldman, B. J. Hampton, T. & Cleary, M. L. A carboxy-terminal deletion mutant of Notch1 accelerates lymphoid oncogenesis in E2A-PBX1 transgenic mice. Blood 96, 1906–1913 (2000).

    CAS  PubMed  Google Scholar 

  53. Beverly, L. J. & Capobianco, A. J. Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell 3, 551–564 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Allman, D. et al. Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J. Exp. Med. 194, 99–106 (2001). This report shows that aberrant Notch signalling in haematopoietic progenitors has to cooperate with a T-cell-specific signal (pre-TCR mediated signal) in order to cause T-cell neoplasms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Robey, E. et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Bellavia, D. et al. Constitutive activation of NF-κB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J. 19, 3337–3348 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Deftos, M. L. et al. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 13, 73–84 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rohn, J. L. et al. Transduction of Notch2 in feline leukemia virus-induced thymic lymphoma. J. Virol. 70, 8071–8080 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yan, X. Q. et al. A novel Notch ligand, Dll4, induces T-cell leukemia/lymphoma when overexpressed in mice by retroviral-mediated gene transfer. Blood 98, 3793–3799 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Dorsch, M. et al. Ectopic expression of Delta4 impairs hematopoietic development and leads to lymphoproliferative disease. Blood 100, 2046–2055 (2002).

    CAS  PubMed  Google Scholar 

  61. Weng, A. P. et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol. Cell Biol. 23, 655–664 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gallahan, D. & Callahan, R. Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J. Virol. 61, 66–74 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gallahan, D. et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res. 56, 1775–1785 (1996).

    CAS  PubMed  Google Scholar 

  64. Jhappan, C. et al. Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev. 6, 345–355 (1992). Shows that aberrant expression of the int3 locus, which was later identifed as the NOTCH4 gene (see also reference 9), can cause epithelial tumours.

    Article  CAS  PubMed  Google Scholar 

  65. Dievart, A., Beaulieu, N. & Jolicoeur, P. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 18, 5973–5981 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Weijzen, S. et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nature Med. 8, 979–986 (2002). Shows that the presence of NOTCH1 is not a consequence of cancer, but is instead required for the manifestation of cancer properties.

    Article  CAS  PubMed  Google Scholar 

  67. Zagouras, P. et al. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl Acad. Sci. USA 92, 6414–6418 (1995). This is the first report that alluded to the involvement of Notch in carcinomas, specifically cervical cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Milner, L. A. et al. Inhibition of granulocytic differentiation by mNotch1. Proc. Natl Acad. Sci. USA 93, 13014–13019 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Milner, L. A. & Bigas, A. Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood 93, 2431–2448 (1999).

    CAS  PubMed  Google Scholar 

  70. Ronchini, C. & Capobianco, A. J. Notch(ic)-ER chimeras display hormone-dependent transformation, nuclear accumulation, phosphorylation and CBF1 activation. Oncogene 19, 3914–3924 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Dumont, E. et al. Neoplastic transformation by Notch is independent of transcriptional activation by RBP-J signalling. Oncogene 19, 556–561 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Jeffries, S. & Capobianco, A. J. Neoplastic transformation by Notch requires nuclear localization. Mol. Cell Biol. 20, 3928–3941 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Imatani, A. & Callahan, R. Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene 19, 223–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Capobianco, A. J. et al. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol. Cell Biol. 17, 6265–6273 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rangarajan, A. et al. Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt. Virology 286, 23–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Fitzgerald, K., Harrington, A. & Leder, P. Ras pathway signals are required for notch-mediated oncogenesis. Oncogene 19, 4191–4198 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Bocchetta, M. et al. Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells. Oncogene 22, 81–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, Y., Fischer, W. H. & Gill, G. N. Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J. Biol. Chem. 272, 14110–14114 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Oswald, F. et al. NF-κB2 is a putative target gene of activated Notch-1 via RBP-Jκ. Mol. Cell Biol. 18, 2077–2088 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Khwaja, A. et al. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 16, 2783–2793 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Singh, B. et al. p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev. 16, 984–993 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stern, D. F. ErbBs in mammary development. Exp. Cell Res. 284, 89–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Lohrisch, C. & Piccart, M. An overview of HER2. Semin. Oncol. 28, 3–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Yarden, Y. Biology of HER2 and its importance in breast cancer. Oncology 61 (Suppl 2), 1–13 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Lin, A. & Karin, M. NF-κB in cancer: a marked target. Semin. Cancer Biol. 13, 107–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Klein, G., Powers, A. & Croce, C. Association of SV40 with human tumors. Oncogene 21, 1141–1149 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Shivapurkar, N. et al. Presence of simian virus 40 sequences in malignant mesotheliomas and mesothelial cell proliferations. J. Cell Biochem. 76, 181–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Garcea, R. L. & Imperiale, M. J. Simian virus 40 infection of humans. J. Virol. 77, 5039–5045 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nickoloff, B. J. et al. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-κB and PPARγ. Cell Death Differ. 9, 842–855 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Talora, C. et al. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 16, 2252–2263 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chu, J. et al. Repression of activator protein-1-mediated transcriptional activation by the Notch-1 intracellular domain. J. Biol. Chem. 277, 7587–7597 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet. 33, 416–421 (2003). Shows that inactivation of Notch1 in the skin results in the development of basal-cell-carcinoma-like tumours due to downregulation of Waf1 and repression of Gli2-mediated Sonic hedgehog signalling and β-catenin-mediated Wnt signalling.

    Article  CAS  PubMed  Google Scholar 

  94. Topley, G. I. et al. p21(WAF1/Cip1) functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential. Proc. Natl Acad. Sci. USA 96, 9089–9094 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weinberg, W. C. et al. Genetic deletion of p21WAF1 enhances papilloma formation but not malignant conversion in experimental mouse skin carcinogenesis. Cancer Res. 59, 2050–2054 (1999).

    CAS  PubMed  Google Scholar 

  96. Philipp, J. et al. Tumor suppression by p27Kip1 and p21Cip1 during chemically induced skin carcinogenesis. Oncogene 18, 4689–4698 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Thelu, J., Rossio, P. & Favier, B. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol. 2, 7 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  99. Lo Muzio, L. et al. WNT-1 expression in basal cell carcinoma of head and neck. An immunohistochemical and confocal study with regard to the intracellular distribution of β-catenin. Anticancer Res. 22, 565–576 (2002).

    CAS  PubMed  Google Scholar 

  100. Yamazaki, F. et al. Immunohistochemical detection for nuclear β-catenin in sporadic basal cell carcinoma. Br. J. Dermatol. 145, 771–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Boonchai, W. et al. Expression of β-catenin, a key mediator of the WNT signaling pathway, in basal cell carcinoma. Arch. Dermatol. 136, 937–938 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Axelrod, J. D. et al. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science 271, 1826–1832 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Borges, M. et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386, 852–855 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Ito, T. et al. Basic helix–loop–helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development 127, 3913–3921 (2000).

    CAS  PubMed  Google Scholar 

  105. de la Pompa, J. L. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124, 1139–1148 (1997).

    CAS  PubMed  Google Scholar 

  106. Ishibashi, M. et al. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix–loop–helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9, 3136–3148 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Sriuranpong, V. et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res. 61, 3200–3205 (2001).

    CAS  PubMed  Google Scholar 

  108. Sriuranpong, V. et al. Notch signaling induces rapid degradation of achaete-scute homolog 1. Mol. Cell Biol. 22, 3129–3139 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Field, J. K. & Spandidos, D. A. The role of ras and myc oncogenes in human solid tumours and their relevance in diagnosis and prognosis. Anticancer Res. 10, 1–22 (1990).

    CAS  PubMed  Google Scholar 

  110. Bos, J. L. The ras gene family and human carcinogenesis. Mutat Res. 195, 255–271 (1988).

    Article  CAS  PubMed  Google Scholar 

  111. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  PubMed  Google Scholar 

  112. Serrano, M. et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Evan, G. I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992). The first report to show that an oncogene can induce apoptosis. This led to many subsequent reports that showed growth-suppressing properties of oncogenes.

    Article  CAS  PubMed  Google Scholar 

  114. Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Scheffner, M. et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  PubMed  Google Scholar 

  116. Dyson, N. et al. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989).

    Article  CAS  PubMed  Google Scholar 

  117. Munger, K. et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20, 7888–7898 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Klingelhutz, A. J., Foster, S. A. & McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Daniel, B. et al. The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions. J. Gen. Virol. 78, 1095–1101 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Helt, A. M., Funk, J. O. & Galloway, D. A. Inactivation of both the retinoblastoma tumor suppressor and p21 by the human papillomavirus type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells. J. Virol. 76, 10559–10568 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Westbrook, T. F. et al. E7 abolishes raf-induced arrest via mislocalization of p21(Cip1). Mol. Cell. Biol. 22, 7041–7052 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bedell, M. A., Jones, K. H. & Laimins, L. A. The E6-E7 region of human papillomavirus type 18 is sufficient for transformation of NIH 3T3 and rat-1 cells. J. Virol. 61, 3635–3640 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Crook, T. et al. Continued expression of HPV-16 E7 protein is required for maintenance of the transformed phenotype of cells co-transformed by HPV-16 plus EJ-ras. EMBO J. 8, 513–519 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ma, Y. Y. et al. PIK3CA as an oncogene in cervical cancer. Oncogene 19, 2739–2744 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Yang, A. et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 2, 305–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Hibi, K. et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc. Natl Acad. Sci. USA 97, 5462–5467 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Heselmeyer, K. et al. Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc. Natl Acad. Sci. USA 93, 479–484 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rooney, P. H. et al. Comparative genomic hybridization and chromosomal instability in solid tumours. Br. J. Cancer 80, 862–873 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, T. Y. et al. Histologic and immunophenotypic classification of cervical carcinomas by expression of the p53 homologue p63: a study of 250 cases. Hum. Pathol. 32, 479–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Quade, B. J. et al. Expression of the p53 homologue p63 in early cervical neoplasia. Gynecol. Oncol. 80, 24–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Sharma, M., Chuang, W. W. & Sun, Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3β inhibition and nuclear β-catenin accumulation. J. Biol. Chem. 277, 30935–30941 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Patturajan, M. et al. δNp63 induces β-catenin nuclear accumulation and signaling. Cancer Cell 1, 369–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Price, M. A. & Kalderon, D. Proteolysis of the hedgehog signaling effector Cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell 108, 823–835 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Kalderon, D. Similarities between the Hedgehog and Wnt signaling pathways. Trends Cell Biol. 12, 523–531 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Jia, J. et al. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 416, 548–552 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Lathion, S., Schaper, J., Beard, P. & Raj, K. Notch1 can contribute to viral-induced transformation of primary human keratinocytes. Cancer Res. (in the press).

  138. Ruiz i Altaba, A., Sanchez, P. & Dahmane, N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nature Rev. Cancer 2, 361–372 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work was not referenced because of space limitations. Research in the Radtke lab is supported by grants from the Swiss Cancer League, the National Science Foundation, the Leenaards Foundation and the European Molecular Biology Organization Young Investigator Programme. Research in the Raj lab is supported by the National Centre of Competence in Research programme of the Swiss National Science Foundation. We thank J. Hornfeld and M. Migliaccio for careful reading of the manuscript and comments. We are also grateful to the anonymous referees, whose constructive suggestions helped improve this review.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

breast cancer

cervical cancer

SCLC

Entrez

adenovirus E1a

HPV E6

HPV E7

SV40T

LocusLink

β-catenin

Dl

DLL1

Dll1

DLL3

DLL4

EGF

ERBB2

Gli2

HES1

JAG1

JAG2

MASH1

MYC

NFκB2

Notch

NOTCH1

Notch1

NOTCH2

NOTCH3

NOTCH4

p53

PI3K

RAS

Ser

Shh

TCRβ

WAF1

Waf1

WNT

Glossary

HAPLOINSUFFICIENCY

A situation in which a loss-of-function phenotype is produced by mutation of one allele of a gene in a diploid cell, even though the other allele is wild type.

FUCOSE RESIDUES

Sugar residues that are attached to certain EGF repeats of Notch receptors. In the presence of the corresponding saccharides, Fringe proteins can elongate these sugar chains.

BINARY CELL-FATE DECISION

The situation in which a precursor cell has to choose between two different cell fates.

MYELOID ORIGIN

Cells of myeloid origin include macrophages, granulocytes, megakaryocytes, erythroblasts and myeloid-dentritic cells, whereas cells of lymphoid origin include T cells, B cells, natural-killer cells and lymphoid dendritic cells.

ERBB2

A receptor tyrosine kinase that is overexpressed and activated in many tumours, especially in breast cancers.

ANOIKIS

Cell death induced as a result of the absence of matrix attachment.

SUPRABASAL LAYERS

The layers of the skin comprising the spinous and the granular layers.

SENESCENCE

The irreversible loss of the proliferation potential, mainly caused by shortening and dysfunction of telomeres. However, it can also be caused by suboptimal culture condition, termed culture shock.

p63

p63 is a homologue of the tumour suppressor p53 and the related protein p73. The TP63 gene encodes several isotypes with divergent abilities to transactivate p53 reporter genes and to induce apoptosis. The predominant p63 isotypes in many epithelial tissues lack the acidic amino terminus (so are known as ΔNp63), which corresponds to the transactivation domain of p53, and therefore lack transactivation function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radtke, F., Raj, K. The role of Notch in tumorigenesis: oncogene or tumour suppressor?. Nat Rev Cancer 3, 756–767 (2003). https://doi.org/10.1038/nrc1186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing