Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst

Abstract

MetaboAnalyst is an integrated web-based platform for comprehensive analysis of quantitative metabolomic data. It is designed to be used by biologists (with little or no background in statistics) to perform a variety of complex metabolomic data analysis tasks. These include data processing, data normalization, statistical analysis and high-level functional interpretation. This protocol provides a step-wise description on how to format and upload data to MetaboAnalyst, how to process and normalize data, how to identify significant features and patterns through univariate and multivariate statistical methods and, finally, how to use metabolite set enrichment analysis and metabolic pathway analysis to help elucidate possible biological mechanisms. The complete protocol can be executed in 45 min.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart for MetaboAnalyst.
Figure 2: Data upload view.
Figure 3: Data normalization view.
Figure 4: Multivariate analysis using PLS-DA.
Figure 5: Results from metabolite set enrichment analysis.
Figure 6: Metabolic pathway analysis and visualization.
Figure 7: Correlation analysis to identify compounds with a specific pattern.

Similar content being viewed by others

References

  1. Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant. Mol. Biol. 48, 155–171 (2002).

    Article  CAS  Google Scholar 

  2. Wishart, D.S. Quantitative metabolomics using NMR. Trends Analyt. Chem. 27, 228–237 (2008).

    Article  CAS  Google Scholar 

  3. Dunn, W.B. & Ellis, D.I. Metabolomics: current analytical platforms and methodologies. Trends Analyt. Chem. 24, 285–294 (2005).

    Article  CAS  Google Scholar 

  4. Wishart, D.S. et al. HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007).

    Article  CAS  Google Scholar 

  5. Lundberg, P. et al. MDL—The Magnetic Resonance Metabolomics Database http://mdl.imv.liu.se (European Society for Magnetic Resonance in Medicine and Biology, ESMRMB, 2005).

  6. Smith, C.A. et al. METLIN—a metabolite mass spectral database. Ther. Drug Monit. 27, 747–751 (2005).

    Article  CAS  Google Scholar 

  7. Weljie, A.M., Newton, J., Mercier, P., Carlson, E. & Slupsky, C.M. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 78, 4430–4442 (2006).

    Article  CAS  Google Scholar 

  8. Smith, C.A., Want, E.J., O′Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  Google Scholar 

  9. Zhao, Q., Stoyanova, R., Du, S., Sajda, P. & Brown, T.R. HiRes—a tool for comprehensive assessment and interpretation of metabolomic data. Bioinformatics 22, 2562–2564 (2006).

    Article  CAS  Google Scholar 

  10. Xia, J., Bjorndahl, T.C., Tang, P. & Wishart, D.S. MetaboMiner—semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinformatics 9, 507 (2008).

    Article  Google Scholar 

  11. Lommen, A. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81, 3079–3086 (2009).

    Article  CAS  Google Scholar 

  12. Katajamaa, M., Miettinen, J. & Oresic, M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634–636 (2006).

    Article  CAS  Google Scholar 

  13. Wishart, D.S. Current Progress in computational metabolomics. Brief. Bioinform. 8, 279–293 (2007).

    Article  CAS  Google Scholar 

  14. Cui, Q. et al. Metabolite identification via the Madison Metabolomics Consortium Database. Nat. Biotechnol. 26, 162–164 (2008).

    Article  CAS  Google Scholar 

  15. Wishart, D.S. et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009).

    Article  CAS  Google Scholar 

  16. Henderson, J.P. et al. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog. 5, e1000305 (2009).

    Article  Google Scholar 

  17. Altmaier, E. et al. Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics. Mol. Nutr. Food Res. 53, 1357–1365 (2009).

    Article  CAS  Google Scholar 

  18. Ewald, J.C., Heux, S. & Zamboni, N. High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Anal. Chem. 81, 3623–3629 (2009).

    Article  CAS  Google Scholar 

  19. Zulak, K.G., Weljie, A.M., Vogel, H.J. & Facchini, P.J. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biol. 8, 5 (2008).

    Article  Google Scholar 

  20. Xia, J., Psychogios, N., Young, N. & Wishart, D.S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37, W652–W660 (2009).

    Article  CAS  Google Scholar 

  21. Xia, J. & Wishart, D.S. MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomics data. Nucleic Acids Res. 38, W71–W77 (2010).

    Article  CAS  Google Scholar 

  22. Xia, J. & Wishart, D.S. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26, 2342–2344 (2010).

    Article  CAS  Google Scholar 

  23. Neuweger, H. et al. MeltDB: a software platform for the analysis and integration of metabolomics experiment data. Bioinformatics 24, 2726–2732 (2008).

    Article  CAS  Google Scholar 

  24. Kastenmuller, G., Romisch-Margl, W., Wagele, B., Altmaier, E. & Suhre, K. metaP-server: a web-based metabolomics data analysis tool. J. Biomed. Biotechnol. 2011, (2010).

  25. Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395 (2010).

    Article  Google Scholar 

  26. Broeckling, C.D., Reddy, I.R., Duran, A.L., Zhao, X. & Sumner, L.W. MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal. Chem. 78, 4334–4341 (2006).

    Article  CAS  Google Scholar 

  27. Duran, A.L., Yang, J., Wang, L.J. & Sumner, L.W. Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19, 2283–2293 (2003).

    Article  CAS  Google Scholar 

  28. Luedemann, A., Strassburg, K., Erban, A. & Kopka, J. TagFinder for the quantitative analysis of gas chromatography—mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 24, 732–737 (2008).

    Article  CAS  Google Scholar 

  29. Wohlgemuth, G., Haldiya, P.K., Willighagen, E., Kind, T. & Fiehn, O. The Chemical Translation Service—a web-based tool to improve standardization of metabolomic reports. Bioinformatics 26, 2647–2648 (2010).

    Article  CAS  Google Scholar 

  30. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–21 (2001).

    Article  CAS  Google Scholar 

  31. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  32. Salomonis, N. et al. GenMAPP 2: new features and resources for pathway analysis. BMC Bioinformatics 8, 217 (2007).

    Article  Google Scholar 

  33. Goffard, N., Frickey, T. & Weiller, G. PathExpress update: the enzyme neighbourhood method of associating gene-expression data with metabolic pathways. Nucleic Acids Res. 37, W335–W339 (2009).

    Article  CAS  Google Scholar 

  34. Hu, Z. et al. VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res. 37, W115–W121 (2009).

    Article  CAS  Google Scholar 

  35. Goffard, N. & Weiller, G. PathExpress: a web-based tool to identify relevant pathways in gene expression data. Nucleic Acids Res. 35, W176–W181 (2007).

    Article  Google Scholar 

  36. Bijlsma, S. et al. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal. Chem. 78, 567–574 (2006).

    Article  CAS  Google Scholar 

  37. Frolkis, A. et al. SMPDB: the small molecule pathway database. Nucleic Acids Res. 38, D480–D487 (2010).

    Article  CAS  Google Scholar 

  38. Efron, B., Tibshirani, R., Storey, J.D. & Tusher, V. Empirical Bayes analysis of a microarray experiment. J. Am. Stat. Assoc. 96, 1151–1160 (2001).

    Article  Google Scholar 

  39. Trygg, J. & Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 16, 119–128 (2002).

    Article  CAS  Google Scholar 

  40. Wang, T. et al. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis. BMC Bioinformatics 10, 83 (2009).

    Article  Google Scholar 

  41. Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods—a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).

    Article  CAS  Google Scholar 

  42. Dieterle, F., Ross, A., Schlotterbeck, G. & Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 78, 4281–4290 (2006).

    Article  CAS  Google Scholar 

  43. van den Berg, R.A., Hoefsloot, H.C., Westerhuis, J.A., Smilde, A.K. & van der Werf, M.J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7, 142 (2006).

    Article  Google Scholar 

  44. Pavlidis, P. Using ANOVA for gene selection from microarray studies of the nervous system. Methods 31, 282–289 (2003).

    Article  CAS  Google Scholar 

  45. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  46. Westerhuis, C.A. et al. Assessment of PLSDA cross validation. Metabolomics 4, 81–89 (2007).

    Article  Google Scholar 

  47. Goeman, J.J., van de Geer, S.A., de Kort, F. & van Houwelingen, H.C. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20, 93–99 (2004).

    Article  CAS  Google Scholar 

  48. Hummel, M., Meister, R. & Mansmann, U. GlobalANCOVA: exploration and assessment of gene group effects. Bioinformatics 24, 78–85 (2008).

    Article  CAS  Google Scholar 

  49. Aittokallio, T. & Schwikowski, B. Graph-based methods for analysing networks in cell biology. Brief Bioinform. 7, 243–255 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Canadian Institutes for Health Research (CIHR) and the Alberta Ingenuity Fund (AIF; now part of Alberta Innovates—Technology Futures) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.X. and D.S.W. prepared and tested the protocol and wrote the article.

Corresponding author

Correspondence to David S Wishart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, J., Wishart, D. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6, 743–760 (2011). https://doi.org/10.1038/nprot.2011.319

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.319

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research