Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone

Abstract

Unlike humans, mouse bone marrow-derived mesenchymal stem cells (MSCs) cannot be easily harvested by adherence to plastic owing to the contamination of cultures by hematopoietic cells. The design of the protocol described here is based on the phenomenon that compact bones abound in MSCs and hematopoietic cells exist in the marrow cavities and the inner interfaces of the bones. The procedure includes flushing bone marrow out of the long bones, digesting the bone chips with collagenase type II, deprivation of the released cells and culturing the digested bone fragments, out of which fibroblast-like cells migrate and grow in the defined medium. The entire technique requires 5 d before the adherent cells are readily passaged. Further identification assays confirm that these cells are MSCs. We provide an easy and reproducible method to harvest mouse MSCs that does not require depletion of hematopoietic cells by sorting or immunomagnetic techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dissection of mouse compact bones and the preparation of bone chips.
Figure 2: Morphological features of compact bone-derived mouse mesenchymal stem cells.
Figure 3: Immunophenotypic characterization and differentiation assays of mouse mesenchymal stem cells.
Figure 4: Comparison of cell yields of cultivation of the compact bones with the culturing of bone marrow from one female mouse aged 2–3 weeks.

Similar content being viewed by others

References

  1. Friedenstein, A.J., Gorskaja, J.F. & Kulagina, N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4, 267–274 (1976).

    CAS  PubMed  Google Scholar 

  2. Prockop, D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74 (1997).

    Article  CAS  Google Scholar 

  3. Dennis, J.E. et al. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J. Bone Miner. Res. 14, 700–709 (1999).

    Article  CAS  Google Scholar 

  4. Pittenger, M.F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  Google Scholar 

  5. da Silva Meirelles, L., Chagastelles, P.C. & Nardi, N.B. Mesenchymal stem cells reside in virtually all postnatal organs and tissues. J. Cell. Sci. 119, 2204–2213 (2006).

    Article  Google Scholar 

  6. Verfaillie, C.M. Adhesion receptors as regulators of the hematopoietic process. Blood 92, 2609–2612 (1998).

    CAS  PubMed  Google Scholar 

  7. Blazsek, I., Chagraoui, J. & Peault, B. Ontogenic emergence of the hematon, a morphogenetic stromal unit that supports multipotential hematopoietic progenitors in mouse bone marrow. Blood 96, 3763–3771 (2000).

    CAS  PubMed  Google Scholar 

  8. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    Article  CAS  Google Scholar 

  9. Pereira, R.F. et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc. Natl. Acad. Sci. USA 95, 1142–1147 (1998).

    Article  CAS  Google Scholar 

  10. Lee, R.H. et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc. Natl. Acad. Sci. USA 103, 17438–17443 (2006).

    Article  CAS  Google Scholar 

  11. Le Blanc, K. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 1439–1441 (2004).

    Article  Google Scholar 

  12. Li, H. et al. Mesenchymal stem cells alter migratory property of T and dendritic cells to delay the development of murine lethal acute graft-versus-host disease. Stem Cells 26, 2531–2541 (2008).

    Article  CAS  Google Scholar 

  13. Zappia, E. et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106, 1755–1761 (2005).

    Article  CAS  Google Scholar 

  14. Djouad, F. et al. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum. 52, 1595–1603 (2005).

    Article  CAS  Google Scholar 

  15. Augello, A., Tasso, R., Negrini, S.M., Cancedda, R. & Pennesi, G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 56, 1175–1186 (2007).

    Article  CAS  Google Scholar 

  16. Friedenstein, A.J., Chailakhjan, R.K. & Lalykina, K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3, 393–403 (1970).

    CAS  PubMed  Google Scholar 

  17. Castro-Malaspina, H. et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56, 289–301 (1980).

    CAS  PubMed  Google Scholar 

  18. Goshima, J., Goldberg, V.M. & Caplan, A.I. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin. Orthop. Relat. Res. 262, 298–311 (1991).

    Google Scholar 

  19. Wakitani, S., Saito, T. & Caplan, A.I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18, 1417–1426 (1995).

    Article  CAS  Google Scholar 

  20. Mosca, J.D. et al. Mesenchymal stem cells as vehicles for gene delivery. Clin. Orthop. Relat. Res. (suppl 379): S71–S90 (2000).

  21. Johnstone, B., Hering, T.M., Caplan, A.I., Goldberg, V.M. & Yoo, J.U. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238, 265–272 (1998).

    Article  CAS  Google Scholar 

  22. Martin, D.R., Cox, N.R., Hathcock, T.L., Niemeyer, G.P. & Baker, H.J. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp. Hematol. 30, 879–886 (2002).

    Article  CAS  Google Scholar 

  23. Kadiyala, S., Young, R.G., Thiede, M.A. & Bruder, S.P. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro . Cell. Transplant. 6, 125–134 (1997).

    Article  CAS  Google Scholar 

  24. Phinney, D.G., Kopen, G., Isaacson, R.L. & Prockop, D.J. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J. Cell. Biochem. 72, 570–585 (1999).

    Article  CAS  Google Scholar 

  25. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    Article  CAS  Google Scholar 

  26. Kitano, Y., Radu, A., Shaaban, A. & Flake, A.W. Selection, enrichment, and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells. Exp. Hematol. 28, 1460–1469 (2000).

    Article  CAS  Google Scholar 

  27. Tropel, P. et al. Isolation and characterization of mesenchymal stem cells from adult mouse bone marrow. Exp. Cell Res. 295, 395–406 (2004).

    Article  CAS  Google Scholar 

  28. Meirelles Lda, S. & Nardi, N.B. Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br. J. Haematol. 123, 702–711 (2003).

    Article  Google Scholar 

  29. Peister, A. et al. Adult stem cells from bone marrow (MSCs) isolated form different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103, 1662–1675 (2004).

    Article  CAS  Google Scholar 

  30. Sun, S. et al. Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells 21, 527–535 (2003).

    Article  CAS  Google Scholar 

  31. Zhang, Y. et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp. Hematol. 32, 657–664 (2004).

    Article  CAS  Google Scholar 

  32. Jiang, X.X. et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105, 4120–4126 (2005).

    Article  CAS  Google Scholar 

  33. Guo, Z. et al. In vitro characteristics and in vivo immunosuppressive activity of compact bone-derived murine mesenchymal progenitor cells. Stem Cells 24, 992–1000 (2006).

    Article  Google Scholar 

  34. Li, H. et al. Functional and phenotypic alteration of intrasplenic lymphocytes affected by mesenchymal stem cells in a murine allo-splenocyte transfusion model. Cell Transplant. 16, 85–95 (2007).

    Article  Google Scholar 

  35. Wang, X.Y. et al. Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood 111, 2436–2443 (2008).

    Article  CAS  Google Scholar 

  36. Zhu, H. et al. Tumor necrosis factor-α alters the modulatory effects of mesenchymal stem cells on osteoclast formation and function. Stem Cells Dev. 18, 1473–1484 (2009).

    Article  CAS  Google Scholar 

  37. Sottile, V., Halleux, C., Bassilana, F., Keller, H. & Seuwen, K. Stem cell characteristics of human trabecular bone-derived cells. Bone 30, 699–704 (2002).

    Article  CAS  Google Scholar 

  38. Nöth, U. et al. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J. Orthop. Res. 20, 1060–1069 (2002).

    Article  Google Scholar 

  39. Tuli, R. et al. Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells 21, 681–693 (2003).

    Article  CAS  Google Scholar 

  40. Tuli, R. et al. A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol. Biotechnol. 23, 37–49 (2003).

    Article  CAS  Google Scholar 

  41. Sakaguchi, Y. et al. Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood 104, 2728–2735 (2004).

    Article  CAS  Google Scholar 

  42. Soleimani, M. & Nadri, S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc. 4, 102–106 (2009).

    Article  CAS  Google Scholar 

  43. Gnecchi, M. & Melo, L.G. Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol. Biol. 482, 281–294 (2009).

    Article  CAS  Google Scholar 

  44. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  Google Scholar 

  45. Adams, G.B. & Scadden, D.T. The hematopoietic stem cell in its place. Nat. Immunol. 7, 333–337 (2006).

    Article  CAS  Google Scholar 

  46. Yin, T. & Li, L. The stem cell niches in bone. J. Clin. Invest. 116, 1195–1201 (2006).

    Article  CAS  Google Scholar 

  47. Villaron, E.M. et al. Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica 89, 1421–1427 (2004).

    PubMed  Google Scholar 

  48. Schmidt, A. et al. Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells 24, 1750–1758 (2006).

    Article  CAS  Google Scholar 

  49. Andrades, J.A. et al. A recombinant human TGF-beta1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Exp. Cell Res. 250, 485–498 (1999).

    Article  CAS  Google Scholar 

  50. Tang, Y. et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 15, 757–765 (2009).

    Article  CAS  Google Scholar 

  51. Thibault, M.M., Hoemann, C.D. & Buschmann, M.D. Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay. Stem Cells Dev. 16, 489–502 (2007).

    Article  CAS  Google Scholar 

  52. Wagner, W. et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33, 1402–1416 (2005).

    Article  CAS  Google Scholar 

  53. Wagner, W. & Ho, A.D. Mesenchymal stem cell preparations—comparing apples and oranges. Stem Cell Rev. 3, 239–248 (2007).

    Article  Google Scholar 

  54. Grigoriadis, A.E., Heersche, J.N. & Aubin, J.E. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J. Cell. Biol. 106, 2139–2151 (1988).

    Article  CAS  Google Scholar 

  55. Bellows, C.G., Aubin, J.E., Heersche, J.N. & Antosz, M.E. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif. Tissue Int. 38, 143–154 (1986).

    Article  CAS  Google Scholar 

  56. Ecarot-Charrier, B., Glorieux, F.H., van der Rest, M. & Pereira, G. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J. Cell. Biol. 96, 639–643 (1983).

    Article  CAS  Google Scholar 

  57. Jaiswal, N., Haynesworth, S.E., Caplan, A.I. & Bruder, S.P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro . J. Cell Biochem. 64, 295–312 (1997).

    Article  CAS  Google Scholar 

  58. Rubin, C.S., Hirsch, A., Fung, C. & Rosen, O.M. Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J. Biol. Chem. 253, 7570–7578 (1978).

    CAS  PubMed  Google Scholar 

  59. Mackay, A.M. et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4, 415–428 (1998).

    Article  CAS  Google Scholar 

  60. Tavella, S. et al. Regulated expression of fibronectin, laminin and related integrin receptors during the early chondrocyte differentiation. J. Cell Sci. 110, 2261–2270 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lindsey Berry (Keck School of Medicine, University of Southern California) for her critical reading of the paper and Dr. Hong-Mei Ning (Department of Cell Biology, Institute of Basic Medical Sciences, Beijing, China) for her helpful discussion. This study was supported by the National Key Basic Research Program of China (2005CB522705), the National Natural Science Foundation (30600309 and 30730043) and High-tech Research and Development Program of China (2007AA021109, 2007AA02Z454).

Author information

Authors and Affiliations

Authors

Contributions

H.Z. and Z.-K.G. were involved in the conception, design and performance of the experiments, data analysis and interpretation and writing of the paper; X.-X.J. carried out the experiments and analyzed and interpreted data; H.L., X.-Y.W. and H.-Y.Y. collected and assembled the data; Y.Z. was involved in the conception and design of the experiments and the writing of the paper; and N.M. was involved in the conception and design of the experiments, provided financial and administrative support and was involved in the writing and final approval of the paper.

Corresponding author

Correspondence to Ning Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Guo, ZK., Jiang, XX. et al. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 5, 550–560 (2010). https://doi.org/10.1038/nprot.2009.238

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.238

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing