Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autophagy gone awry in neurodegenerative diseases

Abstract

Autophagy is essential for neuronal homeostasis, and its dysfunction has been directly linked to a growing number of neurodegenerative disorders. The reasons behind autophagic failure in degenerating neurons can be very diverse because of the different steps required for autophagy and the characterization of the molecular players involved in each of them. Understanding the step(s) affected in the autophagic process in each disorder could explain differences in the course of these pathologies and will be essential to developing targeted therapeutic approaches for each disease based on modulation of autophagy. Here we present examples of different types of autophagic dysfunction described in common neurodegenerative disorders and discuss the prospect of exploring some of the recently identified autophagic variants and the interactions among autophagic and non-autophagic proteolytic systems as possible future therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible steps of macroautophagy altered in neurodegeneration.
Figure 2: Cross-talk among macroautophagy and different cellular proteolytic systems.
Figure 3: Variations of the macroautophagic process.

Similar content being viewed by others

References

  1. Mizushima, N., Levine, B., Cuervo, A.M. & Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. He, C. & Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klionsky, D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931–937 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Rubinsztein, D.C., Gestwicki, J.E., Murphy, L.O. & Klionsky, D.J. Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov. 6, 304–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Winslow, A.R. & Rubinsztein, D.C. Autophagy in neurodegeneration and development. Biochim. Biophys. Acta 1782, 723–729 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nixon, R.A., Yang, D.S. & Lee, J.H. Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy 4, 590–599 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Pickford, F. et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 118, 2190–2199 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Komatsu, M. et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc. Natl. Acad. Sci. USA 104, 14489–14494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Q.J. et al. Induction of autophagy in axonal dystrophy and degeneration. J. Neurosci. 26, 8057–8068 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fimia, G.M. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Kegel, K.B. et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci. 20, 7268–7278 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nixon, R.A. et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64, 113–122 (2005).

    Article  PubMed  Google Scholar 

  15. Yang, Y., Fukui, K., Koike, T. & Zheng, X. Induction of autophagy in neurite degeneration of mouse superior cervical ganglion neurons. Eur. J. Neurosci. 26, 2979–2988 (2007).

    Article  PubMed  Google Scholar 

  16. Mortimore, G.E., Poso, A.R. & Lardeux, B.R. Mechanism and regulation of protein degradation in liver. Diabetes Metab. Rev. 5, 49–70 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Cuervo, A.M. Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol. Metab. 21, 142–150 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Dice, J.F. Chaperone-mediated autophagy. Autophagy 3, 295–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Meijer, A.J. & Codogno, P. Autophagy: regulation and role in disease. Crit. Rev. Clin. Lab. Sci. 46, 210–240 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boland, B. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J. Neurosci. 28, 6926–6937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ravikumar, B., Duden, R. & Rubinsztein, D. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Stefanis, L., Larsen, K., Rideout, H., Sulzer, D. & Greene, L. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 21, 9549–9560 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Webb, J.L., Ravikumar, B., Atkins, J., Skepper, J.N. & Rubinsztein, D.C. Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Morimoto, N. et al. Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res. 1167, 112–117 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Li, L., Zhang, X. & Le, W. Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy 4, 290–293 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Iwata, A. et al. Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc. Natl. Acad. Sci. USA 102, 13135–13140 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Samara, C., Syntichaki, P. & Tavernarakis, N. Autophagy is required for necrotic cell death in Caenorhabditis elegans. Cell Death Differ. 15, 105–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Uchiyama, Y., Koike, M., Shibata, M. & Sasaki, M. Autophagic neuron death. Methods Enzymol. 453, 33–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Cherra, S.J. & Chu, C.T. Autophagy in neuroprotection and neurodegeneration: a question of balance. Future Neurol. 3, 309–323 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rubinsztein, D.C. et al. In search of an “autophagomometer”. Autophagy 5, 585–589 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Axe, E.L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ohsumi, Y. & Mizushima, N. Two ubiquitin-like conjugation systems essential for autophagy. Semin. Cell Dev. Biol. 15, 231–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Simonsen, A. et al. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4, 176–184 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Kihara, A., Kabeya, Y., Ohsumi, Y. & Yoshimori, T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2, 330–335 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhong, Y. et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11, 468–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Erlich, S., Shohami, E. & Pinkas-Kramarski, R. Neurodegeneration induces upregulation of Beclin 1. Autophagy 2, 49–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Shibata, M. et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281, 14474–14485 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Pattingre, S. et al. Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J. Biol. Chem. 284, 2719–2728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanazawa, T. et al. Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J. Biol. Chem. 279, 8452–8459 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Rosenbluth, J.M. & Pietenpol, J.A. mTOR regulates autophagy-associated genes downstream of p73. Autophagy 5, 114–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Kraft, C., Reggiori, F. & Peter, M. Selective types of autophagy in yeast. Biochim. Biophys. Acta 1793, 1404–1412 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Kirkin, V., McEwan, D.G., Novak, I. & Dikic, I. A role for ubiquitin in selective autophagy. Mol. Cell 34, 259–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Sarkar, S., Ravikumar, B. & Rubinsztein, D.C. Autophagic clearance of aggregate-prone proteins associated with neurodegeneration. Methods Enzymol. 453, 83–110 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Tan, J.M., Wong, E.S., Dawson, V.L., Dawson, T.M. & Lim, K.L. Lysine 63-linked polyubiquitin potentially partners with p62 to promote the clearance of protein inclusions by autophagy. Autophagy 4, 251–253 (2007).

    Article  Google Scholar 

  49. Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Zheng, Y.T. et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183, 5909–5916 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Kim, P.K., Hailey, D.W., Mullen, R.T. & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA 105, 20567–20574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Thurston, T.L.M., Ryzhakov, G., Bloor, S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215–1221 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Wong, E.S. et al. Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Hum. Mol. Genet. 17, 2570–2582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jeong, H. et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 137, 60–72 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mookerjee, S. et al. Posttranslational modification of ataxin-7 at lysine 257 prevents autophagy-mediated turnover of an N-terminal caspase-7 cleavage fragment. J. Neurosci. 29, 15134–15144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martinez-Vicente, M. et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 13, 567–576 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Webb, J.L., Ravikumar, B. & Rubinsztein, D.C. Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int. J. Biochem. Cell Biol. 36, 2541–2550 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Iwata, A., Riley, B.E., Johnston, J.A. & Kopito, R.R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280, 40282–40292 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Kochl, R., Hu, X.W., Chan, E.Y. & Tooze, S.A. Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7, 129–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Kimura, S., Noda, T. & Yoshimori, T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct. Funct. 33, 109–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Pacheco, C.D., Elrick, M.J. & Lieberman, A.P. Tau deletion exacerbates the phenotype of Niemann-Pick type C mice and implicates autophagy in pathogenesis. Hum. Mol. Genet. 18, 956–965 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, H.Y. et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality control autophagy. EMBO J. 29, 969–980 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Settembre, C. et al. A block of autophagy in lysosomal storage disorders. Hum. Mol. Genet. 17, 119–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Vergarajauregui, S., Connelly, P.S., Daniels, M.P. & Puertollano, R. Autophagic dysfunction in mucolipidosis type IV patients. Hum. Mol. Genet. 17, 2723–2737 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bi, X. & Liao, G. Autophagic-lysosomal dysfunction and neurodegeneration in Niemann-Pick Type C mice: lipid starvation or indigestion? Autophagy 3, 646–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Lee, J.-H. et al. Presenilin 1 (PS1) is required for v-ATPase targeting and autolysosome acidification. Cell (in the press).

  68. Narendra, D., Tanaka, A., Suen, D.F. & Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Yu, W.H. et al. Macroautophagy—a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J. Cell Biol. 171, 87–98 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaasik, A., Rikk, T., Piirsoo, A., Zharkovsky, T. & Zharkovsky, A. Up-regulation of lysosomal cathepsin L and autophagy during neuronal death induced by reduced serum and potassium. Eur. J. Neurosci. 22, 1023–1031 (2005).

    Article  PubMed  Google Scholar 

  72. Massey, A.C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A.M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA 103, 5805–5810 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaushik, S., Massey, A., Mizushima, N. & Cuervo, A.M. Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol. Biol. Cell 19, 2179–2192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T. & Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Martinez-Vicente, M. et al. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118, 777–788 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, Y. et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18, 4153–4170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, J.A. & Gao, F.B. Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. J. Neurosci. 29, 8506–8511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Urwin, H., Ghazi-Noori, S., Collinge, J. & Isaacs, A. The role of CHMP2B in frontotemporal dementia. Biochem. Soc. Trans. 37, 208–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Rusten, T.E. et al. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr. Biol. 17, 1817–1825 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485–500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eskelinen, E.L. et al. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol. Biol. Cell 13, 3355–3368 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Massey, A.C., Follenzi, A., Kiffin, R., Zhang, C. & Cuervo, A.M. Early cellular changes after blockage of chaperone-mediated autophagy. Autophagy 4, 442–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Kovacs, G.G. & Herbert, B. Prion diseases: from protein to cell pathology. Am. J. Pathol. 172, 555–565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Frost, B. & Diamond, M.I. Prion-like mechanisms in neurodegenerative diseases. Nat. Rev. Neurosci. 11, 155–159 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Heiseke, A., Aguib, Y. & Schatzl, H.M. Autophagy, prion infection and their mutual interactions. Curr. Issues Mol. Biol. 12, 87–98 (2009).

    PubMed  Google Scholar 

  86. Nedelsky, N.B., Todd, P.K. & Taylor, J.P. Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim. Biophys. Acta 1782, 691–699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pandey, U.B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Ding, Q. et al. Characterization of chronic low-level proteasome inhibition on neural homeostasis. J. Neurochem. 86, 489–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Pan, T. et al. Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol. Dis. 32, 16–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Kirkin, V., Lamark, T., Johansen, T. & Dikic, I. NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy 5, 732–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, X.D. et al. p53 mediates mitochondria dysfunction-triggered autophagy activation and cell death in rat striatum. Autophagy 5, 339–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Korolchuk, V.I., Mansilla, A., Menzies, F.M. & Rubinsztein, D.C. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 33, 517–527 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ichimura, Y., Kominami, E., Tanaka, K. & Komatsu, M. Selective turnover of p62/A170/SQSTM1 by autophagy. Autophagy 4, 1063–1066 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Dagda, R.K. et al. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J. Biol. Chem. 284, 13843–13855 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chu, C.T., Zhu, J. & Dagda, R. Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy 3, 663–666 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Sarkar, S. et al. A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Hum. Mol. Genet. 17, 170–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Yamamoto, A., Cremona, M. & Rothman, J. Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J. Cell Biol. 172, 719–731 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Scarlatti, F., Maffei, R., Beau, I., Codogno, P. & Ghidoni, R. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ. 15, 1318–1329 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Nishida, Y. et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654–658 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the numerous colleagues in the field of autophagy who through their animated discussions have helped shape this review and S. Kaushik and S. Orenstein for critically reading the manuscript. Work in our laboratory is supported by US National Institutes of Health grants from the National Institute on Aging (AG021904, AG031782), the National Institute of Diabetes and Digestive and Kidney Diseases (DK041918), the National Institute of Neurological Disorders and Stroke (NS038370), a Glenn Foundation Award and a Hirsch/Weill-Caulier Career Scientist Award. E.W. is supported by a Hereditary Disease Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Cuervo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, E., Cuervo, A. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13, 805–811 (2010). https://doi.org/10.1038/nn.2575

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing