Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endothelial-to-mesenchymal transition contributes to cardiac fibrosis

Abstract

Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart. Transforming growth factor-β1 (TGF-β1) induced endothelial cells to undergo EndMT, whereas bone morphogenic protein 7 (BMP-7) preserved the endothelial phenotype. The systemic administration of recombinant human BMP-7 (rhBMP-7) significantly inhibited EndMT and the progression of cardiac fibrosis in mouse models of pressure overload and chronic allograft rejection. Our findings show that EndMT contributes to the progression of cardiac fibrosis and that rhBMP-7 can be used to inhibit EndMT and to intervene in the progression of chronic heart disease associated with fibrosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lineage tracing of EndMT in Tie1Cre;R26RstoplacZ mice.
Figure 2: Bone marrow–derived Tie1+ cells in cardiac fibrosis.
Figure 3: EndMT in cardiac fibrosis is mediated by TGF-β1 in a Smad-dependent manner.
Figure 4: rhBMP-7 inhibits TGF-β1–induced EndMT in HCEC.
Figure 5: Inhibition of cardiac fibrosis induced by aortic banding by rhBMP-7 is associated with inhibition of EndMT.
Figure 6: Treatment with rhBMP-7 inhibits cardiac fibrosis and reduces EndMT in a model of chronic rejection.

Similar content being viewed by others

References

  1. Jalil, J.E. et al. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ. Res. 64, 1041–1050 (1989).

    Article  CAS  Google Scholar 

  2. Kass, D.A., Bronzwaer, J.G. & Paulus, W.J. What mechanisms underlie diastolic dysfunction in heart failure? Circ. Res. 94, 1533–1542 (2004).

    Article  CAS  Google Scholar 

  3. Vasan, R.S. & Benjamin, E.J. Diastolic heart failure—no time to relax. N. Engl. J. Med. 344, 56–59 (2001).

    Article  CAS  Google Scholar 

  4. Weber, K.T. Monitoring tissue repair and fibrosis from a distance. Circulation 96, 2488–2492 (1997).

    Article  CAS  Google Scholar 

  5. Maric, C., Ryan, G.B. & Alcorn, D. Embryonic and postnatal development of the rat renal interstitium. Anat. Embryol. (Berl.) 195, 503–514 (1997).

    Article  CAS  Google Scholar 

  6. Lang, H. & Fekete, D.M. Lineage analysis in the chicken inner ear shows differences in clonal dispersion for epithelial, neuronal, and mesenchymal cells. Dev. Biol. 234, 120–137 (2001).

    Article  CAS  Google Scholar 

  7. Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350 (2002).

    Article  CAS  Google Scholar 

  8. Eisenberg, L.M. & Markwald, R.R. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ. Res. 77, 1–6 (1995).

    Article  CAS  Google Scholar 

  9. Liebner, S. et al. Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J. Cell Biol. 166, 359–367 (2004).

    Article  CAS  Google Scholar 

  10. Nakajima, Y., Yamagishi, T., Hokari, S. & Nakamura, H. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat. Rec. 258, 119–127 (2000).

    Article  CAS  Google Scholar 

  11. Boyer, A.S. et al. TGFβ2 and TGFβ3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev. Biol. 208, 530–545 (1999).

    Article  CAS  Google Scholar 

  12. Camenisch, T.D. et al. Temporal and distinct TGFβ ligand requirements during mouse and avian endocardial cushion morphogenesis. Dev. Biol. 248, 170–181 (2002).

    Article  CAS  Google Scholar 

  13. Lijnen, P.J., Petrov, V.V. & Fagard, R.H. Induction of cardiac fibrosis by transforming growth factor-β1 . Mol. Genet. Metab. 71, 418–435 (2000).

    Article  CAS  Google Scholar 

  14. Ramsdell, A.F. et al. Identification of an autocrine signaling pathway that amplifies induction of endocardial cushion tissue in the avian heart. Acta Anat. 162, 1–15 (1998).

    Article  CAS  Google Scholar 

  15. Gustafsson, E., Brakebusch, C., Hietanen, K. & Fassler, R. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice. J. Cell Sci. 114, 671–676 (2001).

    CAS  PubMed  Google Scholar 

  16. Mao, X., Fujiwara, Y. & Orkin, S.H. Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc. Natl. Acad. Sci. USA 96, 5037–5042 (1999).

    Article  CAS  Google Scholar 

  17. Korhonen, J., Polvi, A., Partanen, J. & Alitalo, K. The mouse tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. Oncogene 9, 395–403 (1994).

    CAS  PubMed  Google Scholar 

  18. Rafii, S. & Lyden, D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med. 9, 702–712 (2003).

    Article  CAS  Google Scholar 

  19. Hocht-Zeisberg, E. et al. Cellular repopulation of myocardial infarction in patients with sex-mismatched heart transplantation. Eur. Heart J. 25, 749–758 (2004).

    Article  Google Scholar 

  20. Kuwahara, F. et al. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106, 130–135 (2002).

    Article  CAS  Google Scholar 

  21. Lebrin, F. et al. TGF-beta receptor function in the endothelium. Cardiovasc. Res. 65, 599–608 (2005).

    Article  CAS  Google Scholar 

  22. Yang, X. et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J. 18, 1280–1291 (1999).

    Article  CAS  Google Scholar 

  23. Ashcroft, G.S. et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat. Cell Biol. 1, 260–266 (1999).

    Article  CAS  Google Scholar 

  24. Tokumasa, A. et al. Reduction of Smad3 accelerates re-epithelialization in a murine model of colitis. Biochem. Biophys. Res. Commun. 317, 377–383 (2004).

    Article  CAS  Google Scholar 

  25. Potts, J.D. & Runyan, R.B. Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor beta. Dev. Biol. 134, 392–401 (1989).

    Article  CAS  Google Scholar 

  26. Verheule, S. et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circ. Res. 94, 1458–1465 (2004).

    Article  CAS  Google Scholar 

  27. Hogan, B.L. Bone morphogenetic proteins in development. Curr. Opin. Genet. Dev. 6, 432–438 (1996).

    Article  CAS  Google Scholar 

  28. Tarnavski, O. et al. Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiol. Genomics 16, 349–360 (2004).

    Article  CAS  Google Scholar 

  29. Perrino, C. et al. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J. Clin. Invest. 116, 1547–1560 (2006).

    Article  CAS  Google Scholar 

  30. Spindler, M. et al. Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J. Clin. Invest. 101, 1775–1783 (1998).

    Article  CAS  Google Scholar 

  31. Sugimoto, H., Mundel, T.M., Kieran, M.W. & Kalluri, R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 5, 1640–1646 (2006).

    Article  CAS  Google Scholar 

  32. Mandelbrot, D.A. et al. B7-dependent T-cell costimulation in mice lacking CD28 and CTLA4. J. Clin. Invest. 107, 881–887 (2001).

    Article  CAS  Google Scholar 

  33. Lefer, A.M., Tsao, P.S., Ma, X.L. & Sampath, T.K. Anti-ischaemic and endothelial protective actions of recombinant human osteogenic protein (hOP-1). J. Mol. Cell. Cardiol. 24, 585–593 (1992).

    Article  CAS  Google Scholar 

  34. Gould, S.E., Day, M., Jones, S.S. & Dorai, H. BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int. 61, 51–60 (2002).

    Article  CAS  Google Scholar 

  35. Nicoletti, A. & Michel, J.B. Cardiac fibrosis and inflammation: interaction with hemodynamic and hormonal factors. Cardiovasc. Res. 41, 532–543 (1999).

    Article  CAS  Google Scholar 

  36. McMullen, J.R. et al. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 100, 12355–12360 (2003).

    Article  CAS  Google Scholar 

  37. Villarreal, F.J. & Dillmann, W.H. Cardiac hypertrophy-induced changes in mRNA levels for TGF-beta 1, fibronectin, and collagen. Am. J. Physiol. 262, H1861–H1866 (1992).

    CAS  PubMed  Google Scholar 

  38. Tomita, H. et al. Early induction of transforming growth factor-beta via angiotensin II type 1 receptors contributes to cardiac fibrosis induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 32, 273–279 (1998).

    Article  CAS  Google Scholar 

  39. Zeisberg, M. et al. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am. J. Physiol. Renal Physiol. 285, F1060–F1067 (2003).

    Article  CAS  Google Scholar 

  40. Lips, D.J. et al. Left ventricular pressure-volume measurements in mice: comparison of closed-chest versus open-chest approach. Basic Res. Cardiol. 99, 351–359 (2004).

    Article  Google Scholar 

  41. Sugimoto, H. et al. Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc. Natl. Acad. Sci. USA 103, 7321–7326 (2006).

    Article  CAS  Google Scholar 

  42. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).

    Article  CAS  Google Scholar 

  43. Takemoto, M. et al. Chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade: effects on cardiovascular remodeling in rats induced by the long-term blockade of nitric oxide synthesis. Hypertension 30, 1621–1627 (1997).

    Article  CAS  Google Scholar 

  44. Razeghi, P. et al. Lack of NF-kappaB1 (p105/p50) attenuates unloading-induced downregulation of PPARalpha and PPARalpha-regulated gene expression in rodent heart. Cardiovasc. Res. 74, 133–139 (2007).

    Article  CAS  Google Scholar 

  45. Zeisberg, M. et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003).

    Article  CAS  Google Scholar 

  46. Zeisberg, E.M. et al. Morphogenesis of the right ventricle requires myocardial expression of Gata4. J. Clin. Invest. 115, 1522–1531 (2005).

    Article  CAS  Google Scholar 

  47. Maeshima, Y. et al. Identification of the anti-angiogenic site within vascular basement membrane derived tumstatin. J. Biol. Chem. 7, 7 (2001).

    Google Scholar 

  48. Maresh, J.G., Xu, H., Jiang, N. & Shohet, R.V. In vivo transcriptional response of cardiac endothelium to lipopolysaccharide. Arterioscler. Thromb. Vasc. Biol. 24, 1836–1841 (2004).

    Article  CAS  Google Scholar 

  49. Steidl, U. et al. Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat. Genet. 38, 1269–1277 (2006).

    Article  CAS  Google Scholar 

  50. Okuno, Y. et al. Distal elements are critical for human CD34 expression in vivo. Blood 100, 4420–4426 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially funded by research grants DK62987, AA13913, DK61688 and DK55001 from the NIH, partially by a research grant from Novartis Corporation, and partly by a research fund from the Beth Israel Deaconess Medical Center for the Division of Matrix Biology. E.Z. was funded by a fellowship grant from the Leopoldina Academy (BMBF-LPD 9901/8-105) and is currently funded by a Ruth L. Kirschstein National Research Service Award from the NIH (5 F32 HL082436-01). M.Z. is funded by NIH grant 5K08DK074558-01 and the ASN Carl W. Gottschalk Award. EGN is funded by a NIH grant (DK-46282). Parts of this study were presented as an oral presentation at the American Heart Association 2004. We thank V. Toxavidis and J. Tigges from the Beth Israel Deaconess Medical Center Flow Cytometry and Cell Sorting Core Facility for their help with the FACS sorting as well as S. McGoohan for technical assistance with the real-time PCR.

Author information

Authors and Affiliations

Authors

Contributions

E.M.Z.: tissue analysis, immuno-labeling, FISH, EndMT cell culture experiments, bone marrow transplantation, animal husbandry, design of experiments, data analysis and interpretation, substantial contribution to manuscript preparation, writing and generation of all figures. O.T.: All aortic banding surgeries and invasive hemodynamic measurements. M.Z.: isolation of primary heart fibroblasts, MTT assay, collagen ELISA, contribution to conceptual design, data analysis, data discussion and manuscript editing. A.L.D.: echocardiography of mice. J.R.M.: data discussion and manuscript editing. E.G.: generation of Tie1Cre mice. A.C.: study design of transplantation experiments. X.Y.: transplantation surgeries. W.T.P.: AV cushion isolation. A.B.R.: generation of Smad3+/− mice. E.G.N.: manuscript editing, data discussion, generation of FSP1-GFP mice. M.H.S.: study design of transplantation experiments. S.I.: contribution to conceptual design of aortic banding experiments, manuscript editing, data discussion. R.K.: principal investigator of the study; overall study design to address the conceptual ideas; analysis and interpretation of the data, drafting and final editing of the manuscript.

Corresponding author

Correspondence to Raghu Kalluri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–2, Supplementary Note (PDF 827 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeisberg, E., Tarnavski, O., Zeisberg, M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13, 952–961 (2007). https://doi.org/10.1038/nm1613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing