Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells

This article has been updated

Abstract

The spondyloarthropathies are a group of rheumatic diseases that are associated with inflammation at anatomically distal sites, particularly the tendon-bone attachments (entheses) and the aortic root. Serum concentrations of interleukin-23 (IL-23) are elevated and polymorphisms in the IL-23 receptor are associated with ankyosing spondylitis, however, it remains unclear whether IL-23 acts locally at the enthesis or distally on circulating cell populations. We show here that IL-23 is essential in enthesitis and acts on previously unidentified IL-23 receptor (IL-23R)+, RAR-related orphan receptor γt (ROR-γt)+CD3+CD4CD8, stem cell antigen 1 (Sca1)+ entheseal resident T cells. These cells allow entheses to respond to IL-23 in vitro—in the absence of further cellular recruitment—and to elaborate inflammatory mediators including IL-6, IL-17, IL-22 and chemokine (C-X-C motif) ligand 1 (CXCL1). Notably, the in vivo expression of IL-23 is sufficient to phenocopy the human disease, with the specific and characteristic development of enthesitis and entheseal new bone formation in the initial complete absence of synovitis. As in the human condition, inflammation also develops in vivo at the aortic root and valve, which are structurally similar to entheses. The presence of these entheseal resident cells and their production of IL-22, which activates signal transducer and activator of transcription 3 (STAT3)-dependent osteoblast-mediated bone remodeling, explains why dysregulation of IL-23 results in inflammation at this precise anatomical site.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Entheseal inflammation in a passive transfer model of collagen-antibody–induced arthritis (CAIA) is dependent on IL-23.
Figure 2: Entheses contain an IL-23R+ resident cell population.
Figure 3: Systemic IL-23 expression in vivo induces highly specific entheseal inflammation.
Figure 4: IL-23 expression induces aortic root inflammation.
Figure 5: Characterization of the entheseal resident cells.
Figure 6: IL-22 induces a bone remodeling program.

Similar content being viewed by others

Change history

  • 20 August 2012

    In the version of this article initially published online, the x axis in Figure 6c was incorrectly labeled. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Lories, R.J., de Vlam, K. & Luyten, F.P. Are current available therapies disease-modifying in spondyloarthritis? Best Pract. Res. Clin. Rheumatol. 24, 625–635 (2010).

    Article  Google Scholar 

  2. Maksymowych, W.P. Disease modification in ankylosing spondylitis. Nat. Rev. Rheumatol. 6, 75–81 (2010).

    Article  Google Scholar 

  3. Lambert, R.G. et al. Adalimumab significantly reduces both spinal and sacroiliac joint inflammation in patients with ankylosing spondylitis: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 56, 4005–4014 (2007).

    Article  CAS  Google Scholar 

  4. van der Heijde, D. et al. Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years. Arthritis Res. Ther. 11, R127 (2009).

    Article  Google Scholar 

  5. McGonagle, D., Gibbon, W. & Emery, P. Classification of inflammatory arthritis by enthesitis. Lancet 352, 1137–1140 (1998).

    Article  CAS  Google Scholar 

  6. Keffer, J. et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 10, 4025–4031 (1991).

    Article  CAS  Google Scholar 

  7. Rahman, P. et al. Association of interleukin 23 receptor variants with psoriatic arthritis. J. Rheumatol. 36, 137–140 (2009).

    Article  CAS  Google Scholar 

  8. Burton, P.R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  CAS  Google Scholar 

  9. Duerr, R.H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  Google Scholar 

  10. Becker, C. et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J. Clin. Invest. 112, 693–706 (2003).

    Article  CAS  Google Scholar 

  11. Mielants, H. et al. The evolution of spondyloarthropathies in relation to gut histology. III. Relation between gut and joint. J. Rheumatol. 22, 2279–2284 (1995).

    CAS  Google Scholar 

  12. Colbert, R.A., DeLay, M.L., Klenk, E.I. & Layh-Schmitt, G. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol. Rev. 233, 181–202 (2010).

    Article  CAS  Google Scholar 

  13. Goodall, J.C. et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc. Natl. Acad. Sci. USA 107, 17698–17703 (2010).

    Article  CAS  Google Scholar 

  14. Mei, Y. et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin. Rheumatol. 30, 269–273 (2011).

    Article  Google Scholar 

  15. Ciccia, F. et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 60, 955–965 (2009).

    Article  CAS  Google Scholar 

  16. Wang, X., Lin, Z., Wei, Q., Jiang, Y. & Gu, J. Expression of IL-23 and IL-17 and effect of IL-23 on IL-17 production in ankylosing spondylitis. Rheumatol. Int. 29, 1343–1347 (2009).

    Article  CAS  Google Scholar 

  17. Melis, L. et al. Systemic levels of IL-23 are strongly associated with disease activity in rheumatoid arthritis but not spondyloarthritis. Ann. Rheum. Dis. 69, 618–623 (2010).

    Article  CAS  Google Scholar 

  18. Cua, D.J. & Tato, C.M. Innate IL-17–producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479–489 (2010).

    Article  CAS  Google Scholar 

  19. Appel, H. et al. Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum. 54, 2845–2851 (2006).

    Article  Google Scholar 

  20. Appel, H. et al. Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis. Arthritis Res. Ther. 8, R143 (2006).

    Article  Google Scholar 

  21. Kruithof, E. et al. Synovial histopathology of psoriatic arthritis, both oligo- and polyarticular, resembles spondyloarthropathy more than it does rheumatoid arthritis. Arthritis Res. Ther. 7, R569–R580 (2005).

    Article  CAS  Google Scholar 

  22. McGonagle, D. et al. Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann. Rheum. Dis. 61, 534–537 (2002).

    Article  CAS  Google Scholar 

  23. Bollow, M. et al. Quantitative analyses of sacroiliac biopsies in spondyloarthropathies: T cells and macrophages predominate in early and active sacroiliitis- cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. Ann. Rheum. Dis. 59, 135–140 (2000).

    Article  CAS  Google Scholar 

  24. Fukuta, S., Oyama, M., Kavalkovich, K., Fu, F.H. & Niyibizi, C., Identification of types II. IX and X collagens at the insertion site of the bovine achilles tendon. Matrix Biol. 17, 65–73 (1998).

    Article  CAS  Google Scholar 

  25. Gao, J., Messner, K., Ralphs, J.R. & Benjamin, M. An immunohistochemical study of enthesis development in the medial collateral ligament of the rat knee joint. Anat. Embryol. (Berl.) 194, 399–406 (1996).

    Article  CAS  Google Scholar 

  26. Niyibizi, C., Sagarrigo Visconti, C., Gibson, G. & Kavalkovich, K. Identification and immunolocalization of type X collagen at the ligament-bone interface. Biochem. Biophys. Res. Commun. 222, 584–589 (1996).

    Article  CAS  Google Scholar 

  27. Sagarriga Visconti, C., Kavalkovich, K., Wu, J. & Niyibizi, C. Biochemical analysis of collagens at the ligament-bone interface reveals presence of cartilage-specific collagens. Arch. Biochem. Biophys. 328, 135–142 (1996).

    Article  CAS  Google Scholar 

  28. Kumagai, J., Sarkar, K., Uhthoff, H.K., Okawara, Y. & Ooshima, A. Immunohistochemical distribution of type I, II and III collagens in the rabbit supraspinatus tendon insertion. J. Anat. 185, 279–284 (1994).

    CAS  Google Scholar 

  29. Ralphs, J.R. & Benjamin, M. The joint capsule: structure, composition, ageing and disease. J. Anat. 184, 503–509 (1994).

    CAS  Google Scholar 

  30. Rufai, A., Benjamin, M. & Ralphs, J.R. Development and ageing of phenotypically distinct fibrocartilages associated with the rat Achilles tendon. Anat. Embryol. (Berl.) 186, 611–618 (1992).

    Article  CAS  Google Scholar 

  31. Ralphs, J.R., Tyers, R.N. & Benjamin, M. Development of functionally distinct fibrocartilages at two sites in the quadriceps tendon of the rat: the suprapatella and the attachment to the patella. Anat. Embryol. (Berl.) 185, 181–187 (1992).

    Article  CAS  Google Scholar 

  32. Waggett, A.D., Ralphs, J.R., Kwan, A.P., Woodnutt, D. & Benjamin, M. Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol. 16, 457–470 (1998).

    Article  CAS  Google Scholar 

  33. Gillet, P. et al. Studies on type II collagen induced arthritis in rats: an experimental model of peripheral and axial ossifying enthesopathy. J. Rheumatol. 16, 721–728 (1989).

    CAS  Google Scholar 

  34. Benjamin, M. et al. Microdamage and altered vascularity at the enthesis-bone interface provides an anatomic explanation for bone involvement in the HLA-B27–associated spondylarthritides and allied disorders. Arthritis Rheum. 56, 224–233 (2007).

    Article  CAS  Google Scholar 

  35. Wiekowski, M.T. et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J. Immunol. 166, 7563–7570 (2001).

    Article  CAS  Google Scholar 

  36. Chen, Z.Y., He, C.Y., Ehrhardt, A. & Kay, M.A. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol. Ther. 8, 495–500 (2003).

    Article  CAS  Google Scholar 

  37. Palazzi, C., Salvarani, C., D'Angelo, S. & Olivieri, I. Aortitis and periaortitis in ankylosing spondylitis. Joint Bone Spine 78, 451–455 (2011).

    Article  Google Scholar 

  38. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  39. Grateau, G. & Duruoz, M.T. Autoinflammatory conditions: when to suspect? How to treat? Best Pract. Res. Clin. Rheumatol. 24, 401–411 (2010).

    Article  Google Scholar 

  40. May, E. et al. CD8 αβ T cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. J. Immunol. 170, 1099–1105 (2003).

    Article  CAS  Google Scholar 

  41. Taurog, J.D. et al. Spondylarthritis in HLA-B27/human β2-microglobulin-transgenic rats is not prevented by lack of CD8. Arthritis Rheum. 60, 1977–1984 (2009).

    Article  CAS  Google Scholar 

  42. McGonagle, D. et al. Characteristic magnetic resonance imaging entheseal changes of knee synovitis in spondylarthropathy. Arthritis Rheum. 41, 694–700 (1998).

    Article  CAS  Google Scholar 

  43. Rahman, P. et al. Association of interleukin-23 receptor variants with ankylosing spondylitis. Arthritis Rheum. 58, 1020–1025 (2008).

    Article  CAS  Google Scholar 

  44. Alonzo, E.S. & Sant'Angelo, D.B. Development of PLZF-expressing innate T cells. Curr. Opin. Immunol. 23, 220–227 (2011).

    Article  CAS  Google Scholar 

  45. Wofsy, D., Hardy, R.R. & Seaman, W.E. The proliferating cells in autoimmune MRL/lpr mice lack L3T4, an antigen on “helper” T cells that is involved in the response to class II major histocompatibility antigens. J. Immunol. 132, 2686–2689 (1984).

    CAS  Google Scholar 

  46. Riol-Blanco, L. et al. IL-23 receptor regulates unconventional IL-17-producing T cells that control bacterial infections. J. Immunol. 184, 1710–1720 (2010).

    Article  CAS  Google Scholar 

  47. Cowley, S.C., Meierovics, A.I., Frelinger, J.A., Iwakura, Y. & Elkins, K.L. Lung CD4CD8 double-negative T cells are prominent producers of IL-17A and IFN-γ during primary respiratory murine infection with Francisella tularensis live vaccine strain. J. Immunol. 184, 5791–5801 (2010).

    Article  CAS  Google Scholar 

  48. Crispín, J.C. et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J. Immunol. 181, 8761–8766 (2008).

    Article  Google Scholar 

  49. Ling, E., Shubinsky, G. & Press, J. Increased proportion of CD3+CD4CD8 double-negative T cells in peripheral blood of children with Behcet's disease. Autoimmun. Rev. 6, 237–240 (2007).

    Article  Google Scholar 

  50. Venzor, J., Hua, Q., Bressler, R.B., Miranda, C.H. & Huston, D.P. Behcet's-like syndrome associated with idiopathic CD4+ T-lymphocytopenia, opportunistic infections, and a large population of TCRαβ+ CD4 CD8 T cells. Am. J. Med. Sci. 313, 236–238 (1997).

    CAS  Google Scholar 

  51. Sakamoto, A. et al. T cell receptor Vβ repertoire of double-negative α/β T cells in patients with systemic sclerosis. Arthritis Rheum. 35, 944–948 (1992).

    Article  CAS  Google Scholar 

  52. Awasthi, A. et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol. 182, 5904–5908 (2009).

    Article  CAS  Google Scholar 

  53. Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J. Exp. Med. 205, 1381–1393 (2008).

    Article  CAS  Google Scholar 

  54. Chen, Z.Y., He, C.Y. & Kay, M.A. Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Hum. Gene Ther. 16, 126–131 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the assistance of S. Jungers for flow cytometric sorting. We also thank P. Bowness, H. Gaston, A. van der Merwe and A. Cooke for helpful comments on this study. This research was funded by and conducted within Merck Research Laboratories. We thank Z.-Y. Chen (Departments of Pediatrics and Genetics, Stanford University School of Medicine) for the minicircle vector plasmid.

Author information

Authors and Affiliations

Authors

Contributions

J.P.S. identified the role of IL-23 in enthesitis, designed and performed the experiments to investigate IL-23 induction of rheumatic lesions, developed the methodology to isolate, culture and analyze entheseal cells and prepared the manuscript. B.J.-S. identified the role of IL-22 in entheseal disease and designed and performed IL-22 signaling and antibody blocking studies, as well as studies using antibodies against collagen to induce arthritis. S.P.T. directed and performed the multiphoton microscopy and assisted with flow cytometry. C.-C.C., E.P.B. and C.D.B. provided expert advice about murine arthritis models. M.S., J.G. and T.K.M. provided the gene expression data. D.M.G. produced, validated and provided all gene expression minicircle constructs. J.H.Y. and R.H.P. directed histological studies and analyses and developed an enthesitis scoring system. G.E. provided ROR-γt–eGFP reporter mice and discussed key experimental designs. R.A.K. provided expert advice to enable the IL-23 minicircle project. D.M.L. supervised the project and performed the hydrodynamic injections. D.J.C. directed the project, oversaw the experimental design, data analysis and research direction and prepared the manuscript.

Corresponding author

Correspondence to Daniel J Cua.

Ethics declarations

Competing interests

J.P.S., B.J.-S., S.P.T., C.-C.C., M.S., J.G., D.G., E.P.B., T.M., J.H.Y., G.E., C.D.B., R.A.K., R.H.P., D.L. and D.J.C. are employees of Merck & Co, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1514 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherlock, J., Joyce-Shaikh, B., Turner, S. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nat Med 18, 1069–1076 (2012). https://doi.org/10.1038/nm.2817

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2817

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing