Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis

Abstract

The signaling molecule Wnt regulates bone homeostasis through β-catenin–dependent canonical and β-catenin–independent noncanonical pathways. Impairment of canonical Wnt signaling causes bone loss in arthritis and osteoporosis; however, it is unclear how noncanonical Wnt signaling regulates bone resorption. Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor (Ror) proteins. We showed that Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhanced osteoclastogenesis. Osteoblast-lineage cells expressed Wnt5a, whereas osteoclast precursors expressed Ror2. Mice deficient in either Wnt5a or Ror2, and those with either osteoclast precursor-specific Ror2 deficiency or osteoblast-lineage cell-specific Wnt5a deficiency showed impaired osteoclastogenesis. Wnt5a-Ror2 signals enhanced receptor activator of nuclear factor-κB (RANK) expression in osteoclast precursors by activating JNK and recruiting c-Jun on the promoter of the gene encoding RANK, thereby enhancing RANK ligand (RANKL)-induced osteoclastogenesis. A soluble form of Ror2 acted as a decoy receptor of Wnt5a and abrogated bone destruction in mouse arthritis models. Our results suggest that the Wnt5a-Ror2 pathway is crucial for osteoclastogenesis in physiological and pathological environments and represents a therapeutic target for bone diseases, including arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired osteoclastogenesis in Wnt5a+/− and Ror2+/− mice.
Figure 2: Cause of impaired osteoclastogenesis in Ror2 and Wnt5a mutant mice.
Figure 3: Impaired osteoclastogenesis in Ror2 cKO and osteoblast-lineage cell-specific Wnt5a-deficient mice.
Figure 4: JNK, a noncanonical Wnt pathway is involved in Wnt5a-induced RANK expression in osteoclast precursors.
Figure 5: Wnt5a transactivates Tnfrsf11a by interaction of Jun with Sp1 sites in osteoclast precursors.
Figure 6: Wnt5a-Ror2 signaling is involved in bone destruction in collagen-induced arthritis (CIA) mice.

Similar content being viewed by others

References

  1. Teitelbaum, S.L. & Ross, F.P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi, N. et al. Osteoblastic cells are involved in osteoclast formation. Endocrinology 123, 2600–2602 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597–3602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lacey, D.L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Simonet, W.S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Boyle, W.J., Simonet, W.S. & Lacey, D.L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Suda, T. et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345–357 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Calvi, L.M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, J.Y. et al. Osteoblastic regulation of B lymphopoiesis is mediated by Gsa-dependent signaling pathways. Proc. Natl. Acad. Sci. USA 105, 16976–16981 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mizoguchi, T. et al. Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J. Cell Biol. 184, 541–554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Miller, J.R. The Wnts. Genome Biol. 3, 3001.1–3001.15 (2001).

    Article  Google Scholar 

  15. Logan, C.Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Staal, F.J., Luis, T.C. & Tiemessen, M.M. WNT signaling in the immune system: WNT is spreading its wings. Nat. Rev. Immunol. 8, 581–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Day, T.F. et al. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739–750 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Kato, M. et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol. 157, 303–314 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baron, R. & Rawadi, G. Targeting the Wnt/β-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148, 2635–2643 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Yadav, V.K. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825–837 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cui, Y. et al. Lrp5 functions in bone to regulate bone mass. Nat. Med. 17, 684–691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Glass, D.A. 2nd et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Ishitani, T. et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/β-catenin signaling. Mol. Cell. Biol. 23, 131–139 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liang, H. et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 4, 349–360 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Oishi, I. et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8, 645–654 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Billiard, J. et al. The orphan receptor tyrosine kinase Ror2 modulates canonical Wnt signaling in osteoblastic cells. Mol. Endocrinol. 19, 90–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Y. et al. The orphan receptor tyrosine kinase Ror2 promotes osteoblast differentiation and enhances ex vivo bone formation. Mol. Endocrinol. 21, 376–387 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Goldring, S.R. & Gravallese, E.M. Pathogenesis of bone erosions in rheumatoid arthritis. Curr. Opin. Rheumatol. 12, 195–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Li, X. et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat. Genet. 37, 945–952 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, H., Mak, W., Zheng, Y., Dunstan, C.R. & Seibel, M.J. Osteoblasts directly control lineage commitment of mesenchymal progenitor cells through Wnt signaling. J. Biol. Chem. 283, 1936–1945 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Yamaguchi, T.P., Bradley, A., McMahon, A.P. & Jones, S.A. Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211–1223 (1999).

    CAS  PubMed  Google Scholar 

  33. DeChiara, T.M. et al. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat. Genet. 24, 271–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Takeuchi, S. et al. Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 5, 71–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Yamane, T. et al. Wnt signaling regulates hemopoiesis through stromal cells. J. Immunol. 167, 765–772 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Takada, I. et al. A histone lysine methyltransferase activated by non-canonical Wnt signaling suppresses PPAR-γ transactivation. Nat. Cell Biol. 9, 1273–1285 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura, T. et al. Estrogen prevents bone loss via estrogen receptor α and induction of Fas ligand in osteoclasts. Cell 130, 811–823 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Rodda, S.J. & McMahon, A.P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231–3244 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Kwon, O.H., Lee, C.-K., Lee, Y.I., Paik, S.-G. & Lee, H.-J. The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors. Biochem. Biophys. Res. Commun. 335, 437–446 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Kardassis, D., Papakosta, P., Pardali, K. & Moustakas, A. c-Jun transactivates the promoter of the human p21(WAF1/Cip1) gene by acting as a superactivator of the ubiquitous transcription factor Sp1. J. Biol. Chem. 274, 29572–29581 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Blaine, S.A., Wick, M., Dessev, C. & Nemenoff, R.A. Induction of cPLA2 in lung epithelial cells and non-small cell lung cancer is mediated by Sp1 and c-Jun. J. Biol. Chem. 276, 42737–42743 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Sen, M. et al. Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 97, 2791–2796 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, N., Takami, M., Rho, J., Josien, R. & Choi, Y. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J. Exp. Med. 195, 201–209 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koga, T. et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235–1241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arai, F. et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor κB (RANK) receptors. J. Exp. Med. 190, 1741–1754 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schett, G., Zwerina, J. & David, J.P. The role of Wnt proteins in arthritis. Nat. Clin. Pract. Rheumatol. 4, 473–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Topol, L. et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation. J. Cell Biol. 162, 899–908 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sato, A., Yamamoto, H., Sakane, H., Koyama, H. & Kikuchi, A. Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J. 29, 41–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Pettit, A.R., Walsh, N.C., Manning, C., Goldring, S.R. & Gravallese, E.M. RANKL protein is expressed at the pannus-bone interface at sites of articular bone erosion in rheumatoid arthritis. Rheumatology 45, 1068–1076 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Kubota, A., Hasegawa, K., Suguro, T. & Koshihara, Y. Tumor necrosis factor-α promotes the expression of osteoprotegerin in rheumatoid synovial fibroblasts. J. Rheumatol. 31, 426–435 (2004).

    CAS  PubMed  Google Scholar 

  54. Afzal, A.R. et al. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat. Genet. 25, 419–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. van Bokhoven, H. et al. Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat. Genet. 25, 423–426 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Nomi, M. et al. Loss of mRor1 enhances the heart and skeletal abnormalities in mRor2-deficient mice: redundant and pleiotropic functions of mRor1 and mRor2 receptor tyrosine kinases. Mol. Cell. Biol. 21, 8329–8335 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Binder, N.B. et al. Estrogen-dependent and C-C chemokine receptor-2–dependent pathways determine osteoclast behavior in osteoporosis. Nat. Med. 15, 417–424 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Trentham, D.E., Townes, A.S. & Kang, A.H. Autoimmunity to type II collagen an experimental model of arthritis. J. Exp. Med. 146, 857–868 (1977).

    Article  CAS  PubMed  Google Scholar 

  60. Pettit, A.R. et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol. 159, 1689–1699 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Kitamura (Tokyo University) for pMX-IRES-GFP vectors and Plat-E cells; M. Sakoda, S. Kinugawa, Y. Nakamichi and T. Yamashita for technical assistance; A. Yamaguchi, H. Takayanagi and T. Nakashima for thoughtful discussion; and T. Nishizawa, Y. Ueno and M. Saito for discussions about mice models. This work was supported by a Grant-in-Aid for Scientific Research (18390495, 22390351 (N.T.); 18390557, 21390551 (Y. Kobayashi); 19390476, 21390498 (N.U.)) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by a grant from the Naito Foundation (Y. Kobayashi).

Author information

Authors and Affiliations

Authors

Contributions

K.M. and Y. Kobayashi contributed equally to the manuscript, conducting most of the experiments and cooperating in the preparation of the manuscript. N.U., S.U., I.T., S. Kato, K.M. and T.J.M. supported the in vivo experiments, conducting the data analysis, and contributed to the manuscript preparation. T.M., A.I. and Y. Kikuchi carried out the immunohistochemistry and purified recombinant proteins. S. Kani, M.N. and Y.M. generated Ror2-deficient, Ror2-floxed mice and Ror2-specific antibodies and contributed to the data analysis. Y. Kobayashi generated Tnfrsf11aCre/+ and Wnt5a-floxed mice. Y. Kobayashi and N.T. designed and supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Yasuhiro Kobayashi or Naoyuki Takahashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 959 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeda, K., Kobayashi, Y., Udagawa, N. et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med 18, 405–412 (2012). https://doi.org/10.1038/nm.2653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2653

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing