Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Estrogen-dependent and C-C chemokine receptor-2–dependent pathways determine osteoclast behavior in osteoporosis

Abstract

Understanding the mechanisms of osteoclastogenesis is crucial for developing new drugs to treat diseases associated with bone loss, such as osteoporosis. Here we report that the C-C chemokine receptor-2 (CCR2) is crucially involved in balancing bone mass. CCR2-knockout mice have high bone mass owing to a decrease in number, size and function of osteoclasts. In normal mice, activation of CCR2 in osteoclast progenitor cells results in both nuclear factor-κB (NF-κB) and extracellular signal–related kinase 1 and 2 (ERK1/2) signaling but not that of p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. The induction of NF-κB and ERK1/2 signaling in turn leads to increased surface expression of receptor activator of NF-κB (RANK, encoded by Tnfrsf11a), making the progenitor cells more susceptible to RANK ligand-induced osteoclastogenesis. In ovariectomized mice, a model of postmenopausal osteoporosis, CCR2 is upregulated on wild-type preosteoclasts, thus increasing the surface expression of RANK on these cells and their osteoclastogenic potential, whereas CCR2-knockout mice are resistant to ovariectomy-induced bone loss. These data reveal a previously undescribed pathway by which RANK, osteoclasts and bone homeostasis are regulated in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ccr2−/− mice show increased bone mass and stability.
Figure 2: Osteoclasts but not osteoblasts are affected by the absence of CCR2.
Figure 3: Osteoclast generation and function is decreased in BMMs from Ccr2−/− mice.
Figure 4: CCR2−/− mice show lower RANK levels.
Figure 5: MCP-1 and MCP-3 act via CCR2 to affect RANK expression.
Figure 6: Ccr2−/− mice are protected from osteoporosis.

Similar content being viewed by others

References

  1. Teitelbaum, S.L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).

    Article  CAS  Google Scholar 

  2. Weitzmann, M.N. & Pacifici, R. Estrogen deficiency and bone loss: an inflammatory tale. J. Clin. Invest. 116, 1186–1194 (2006).

    Article  CAS  Google Scholar 

  3. Miyamoto, T. & Suda, T. Differentiation and function of osteoclasts. Keio J. Med. 52, 1–7 (2003).

    Article  Google Scholar 

  4. Stepan, J.J., Alenfeld, F., Boivin, G., Feyen, J.H. & Lakatos, P. Mechanisms of action of antiresorptive therapies of postmenopausal osteoporosis. Endocr. Regul. 37, 225–238 (2003).

    CAS  PubMed  Google Scholar 

  5. Tolar, J., Teitelbaum, S.L. & Orchard, P.J. Osteopetrosis. N. Engl. J. Med. 351, 2839–2849 (2004).

    Article  Google Scholar 

  6. Choi, S.J. et al. Macrophage inflammatory protein 1-α is a potential osteoclast stimulatory factor in multiple myeloma. Blood 96, 671–675 (2000).

    CAS  PubMed  Google Scholar 

  7. Kim, M.S., Day, C.J. & Morrison, N.A. MCP-1 is induced by receptor activator of nuclear factor-κB ligand, promotes human osteoclast fusion and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. J. Biol. Chem. 280, 16163–16169 (2005).

    Article  CAS  Google Scholar 

  8. Kim, M.S. et al. MCP-1–induced human osteoclast-like cells are tartrate-resistant acid phosphatase, NFATc1, and calcitonin receptor-positive but require receptor activator of NFκB ligand for bone resorption. J. Biol. Chem. 281, 1274–1285 (2006).

    Article  CAS  Google Scholar 

  9. Horuk, R. Chemokine receptors. Cytokine Growth Factor Rev. 12, 313–335 (2001).

    Article  CAS  Google Scholar 

  10. Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 100, 2552–2561 (1997).

    Article  CAS  Google Scholar 

  11. Charo, I.F. et al. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc. Natl. Acad. Sci. USA 91, 2752–2756 (1994).

    Article  CAS  Google Scholar 

  12. Jia, T. et al. Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J. Immunol. 180, 6846–6853 (2008).

    Article  CAS  Google Scholar 

  13. Kim, M.S., Magno, C.L., Day, C.J. & Morrison, N.A. Induction of chemokines and chemokine receptors CCR2b and CCR4 in authentic human osteoclasts differentiated with RANKL and osteoclast like cells differentiated by MCP-1 and RANTES. J. Cell. Biochem. 97, 512–518 (2006).

    Article  CAS  Google Scholar 

  14. Kruse, K. & Kracht, U. Evaluation of serum osteocalcin as an index of altered bone metabolism. Eur. J. Pediatr. 145, 27–33 (1986).

    Article  CAS  Google Scholar 

  15. Russell, R.G. et al. Biochemical markers of bone turnover in Paget's disease. Metab. Bone Dis. Relat. Res. 3, 255–262 (1981).

    Article  CAS  Google Scholar 

  16. Lacey, D.L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  Google Scholar 

  17. Li, P. et al. Systemic tumor necrosis factor α mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor α–transgenic mice. Arthritis Rheum. 50, 265–276 (2004).

    Article  CAS  Google Scholar 

  18. Tsou, C.L. et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117, 902–909 (2007).

    Article  CAS  Google Scholar 

  19. Viedt, C. et al. Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-κB and activator protein-1. Arterioscler. Thromb. Vasc. Biol. 22, 914–920 (2002).

    Article  CAS  Google Scholar 

  20. Idris, A.I. et al. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat. Med. 11, 774–779 (2005).

    Article  CAS  Google Scholar 

  21. Turner, R.T., Wakley, G.K., Hannon, K.S. & Bell, N.H. Tamoxifen inhibits osteoclast-mediated resorption of trabecular bone in ovarian hormone-deficient rats. Endocrinology 122, 1146–1150 (1988).

    Article  CAS  Google Scholar 

  22. Owen, J.L. et al. The expression of CCL2 by T lymphocytes of mammary tumor bearers: role of tumor-derived factors. Cell. Immunol. 235, 122–135 (2005).

    Article  CAS  Google Scholar 

  23. Zallone, A. Direct and indirect estrogen actions on osteoblasts and osteoclasts. Ann. N.Y. Acad. Sci. 1068, 173–179 (2006).

    Article  CAS  Google Scholar 

  24. Manolagas, S.C. & Jilka, R.L. Cytokines, hematopoiesis, osteoclastogenesis and estrogens. Calcif. Tissue Int. 50, 199–202 (1992).

    Article  CAS  Google Scholar 

  25. Manolagas, S.C., Kousteni, S. & Jilka, R.L. Sex steroids and bone. Recent Prog. Horm. Res. 57, 385–409 (2002).

    Article  CAS  Google Scholar 

  26. Manolagas, S.C. Role of cytokines in bone resorption. Bone 17, 63S–67S (1995).

    Article  CAS  Google Scholar 

  27. Cenci, S. et al. Estrogen deficiency induces bone loss by enhancing T cell production of TNF-α. J. Clin. Invest. 106, 1229–1237 (2000).

    Article  CAS  Google Scholar 

  28. Wei, S., Kitaura, H., Zhou, P., Ross, F.P. & Teitelbaum, S.L. IL-1 mediates TNF-induced osteoclastogenesis. J. Clin. Invest. 115, 282–290 (2005).

    Article  CAS  Google Scholar 

  29. Lean, J.M., Murphy, C., Fuller, K. & Chambers, T.J. CCL9/MIP-1γ and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J. Cell. Biochem. 87, 386–393 (2002).

    Article  CAS  Google Scholar 

  30. Breitkreutz, I. et al. Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. Br. J. Haematol. 139, 55–63 (2007).

    Article  CAS  Google Scholar 

  31. Janis, K. et al. Estrogen decreases expression of chemokine receptors, and suppresses chemokine bioactivity in murine monocytes. Am. J. Reprod. Immunol. 51, 22–31 (2004).

    Article  Google Scholar 

  32. Arici, A., Senturk, L.M., Seli, E., Bahtiyar, M.O. & Kim, G. Regulation of monocyte chemotactic protein-1 expression in human endometrial stromal cells by estrogen and progesterone. Biol. Reprod. 61, 85–90 (1999).

    Article  CAS  Google Scholar 

  33. Koh, K.K. et al. Effect of hormone replacement therapy on nitric oxide bioactivity and monocyte chemoattractant protein-1 levels. Int. J. Cardiol. 81, 43–50 (2001).

    Article  CAS  Google Scholar 

  34. McClung, M.R. et al. Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 354, 821–831 (2006).

    Article  CAS  Google Scholar 

  35. Dougall, W.C. et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 13, 2412–2424 (1999).

    Article  CAS  Google Scholar 

  36. Kong, Y.Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

    Article  CAS  Google Scholar 

  37. Yamada, Y., Ando, F., Niino, N. & Shimokata, H. Association of a polymorphism of the CC chemokine receptor-2 gene with bone mineral density. Genomics 80, 8–12 (2002).

    Article  CAS  Google Scholar 

  38. Hayer, S. et al. CD44 is a determinant of inflammatory bone loss. J. Exp. Med. 201, 903–914 (2005).

    Article  CAS  Google Scholar 

  39. Parfitt, A.M. et al. Bone histomorphometry: standardization of nomenclature, symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2, 595–610 (1987).

    Article  CAS  Google Scholar 

  40. Takeshita, S., Kaji, K. & Kudo, A. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J. Bone Miner. Res. 15, 1477–1488 (2000).

    Article  CAS  Google Scholar 

  41. Takeshita, S. et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat. Med. 8, 943–949 (2002).

    Article  CAS  Google Scholar 

  42. Herault, O. et al. A rapid single-laser flow cytometric method for discrimination of early apoptotic cells in a heterogenous cell population. Br. J. Haematol. 104, 530–537 (1999).

    Article  CAS  Google Scholar 

  43. Redlich, K. et al. Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor–mediated arthritis. Am. J. Pathol. 164, 543–555 (2004).

    Article  CAS  Google Scholar 

  44. Mack, M. et al. Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. J. Immunol. 166, 4697–4704 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B.R. Binder, L. Bakiri and E.F. Wagner for critical comments and suggestions to the manuscript. We thank the laboratory of P.K. Zysset for their help with microcomputed tomography images as well as C.W. Steiner, M. Tryniecki and A. Raffetseder for their technical assistance and J. Zaujec for performing the ovariectomies. This work was supported by Austrian Science Fund (FWF) grant 18223 and by the Center for Musculoskeletal Diseases of the Medical University Vienna.

Author information

Authors and Affiliations

Authors

Contributions

N.B.B. designed and performed all experiments and wrote the manuscript; B.N. and R.S. helped with the experiments; M.M. performed CCR2 surface expression analysis; R.G.E. and T.P. performed the biomechanical analysis; O.H. performed the resorption assays; T.M.S. provided and analyzed the Ccl2−/− mice; J.S.S. participated in evaluating data and writing the manuscript; and K.R. directed the project, designed the experiments and wrote the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Kurt Redlich.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–4 (PDF 899 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, N., Niederreiter, B., Hoffmann, O. et al. Estrogen-dependent and C-C chemokine receptor-2–dependent pathways determine osteoclast behavior in osteoporosis. Nat Med 15, 417–424 (2009). https://doi.org/10.1038/nm.1945

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing