Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses

Abstract

Here we have studied the involvement of endothelial heparan sulfate in inflammation by inactivating the enzyme N-acetyl glucosamine N-deacetylase–N-sulfotransferase-1 in endothelial cells and leukocytes, which is required for the addition of sulfate to the heparin sulfate chains. Mutant mice developed normally but showed impaired neutrophil infiltration in various inflammation models. These effects were due to changes in heparan sulfate specifically in endothelial cells. Decreased neutrophil infiltration was partially due to altered rolling velocity correlated with weaker binding of L-selectin to endothelial cells. Chemokine transcytosis across endothelial cells and presentation on the cell surface were also reduced, resulting in decreased neutrophil firm adhesion and migration. Thus, endothelial heparan sulfate has three functions in inflammation: by acting as a ligand for L-selectin during neutrophil rolling; in chemokine transcytosis; and by binding and presenting chemokines at the lumenal surface of the endothelium.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting, screening and genetic analysis of Ndst1 in mice.
Figure 2: Reduced sulfation of heparan sulfate in endothelial cells.
Figure 3: Endothelial but not leukocyte Ndst1 deficiency impairs inflammatory responses in vivo.
Figure 4: LPS- and chemokine-induced neutrophil immigration in air pouches.
Figure 5: Rolling and adhesion of mouse neutrophils on endothelial cells under flow.
Figure 6: Binding of L-selectin to endothelial cells.
Figure 7: Endothelial Ndst1 deficiency reduces chemokine immobilization.
Figure 8: Pericellular transport and transcytosis of IL-8.

Similar content being viewed by others

References

  1. Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  2. Lowe, J.B. Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr. Opin. Cell Biol. 15, 531–538 (2003).

    Article  CAS  Google Scholar 

  3. Ley, K. Arrest chemokines. Microcirculation 10, 289–295 (2003).

    Article  CAS  Google Scholar 

  4. Varki, A. Selectin ligands: Will the real ones please stand up? J. Clin. Invest. 99, 158–162 (1997).

    Article  CAS  Google Scholar 

  5. Rosen, S.D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    Article  CAS  Google Scholar 

  6. Leppanen, A., Yago, T., Otto, V.I., McEver, R.P. & Cummings, R.D. Model glycosulfopeptides from P-selectin glycoprotein ligand-1 require tyrosine sulfation and a core 2-branched O-glycan to bind to L-selectin. J. Biol. Chem. 278, 26391–26400 (2003).

    Article  Google Scholar 

  7. Jung, U. & Ley, K. Mice lacking two or all three selectins demonstrate overlapping and distinct functions for each selectin. J. Immunol. 162, 6755–6762 (1999).

    CAS  PubMed  Google Scholar 

  8. Robinson, S.D. et al. Multiple, targeted deficiencies in selectins reveal a predominant role for P-selectin in leukocyte recruitment. Proc. Natl. Acad. Sci. USA 96, 11452–11457 (1999).

    Article  CAS  Google Scholar 

  9. Norgard-Sumnicht, K.E., Varki, N.M. & Varki, A. Calcium-dependent heparin-like ligands for L-selectin in nonlymphoid endothelial cells. Science 261, 480–483 (1993).

    Article  CAS  Google Scholar 

  10. Nelson, R.M. et al. Heparin oligosaccharides bind L- and P-Selectin and inhibit acute inflammation. Blood 82, 3253–3258 (1993).

    CAS  PubMed  Google Scholar 

  11. Wang, L., Brown, J.R., Varki, A. & Esko, J.D. Heparin's anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L- and P-selectins. J. Clin. Invest. 110, 127–136 (2002).

    Article  CAS  Google Scholar 

  12. Yoshie, O., Imai, T. & Nomiyama, H. Chemokines in immunity. Adv. Immunol. 78, 57–110 (2001).

    Article  CAS  Google Scholar 

  13. Middleton, J., Patterson, A.M., Gardner, L., Schmutz, C. & Ashton, B.A. Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood 100, 3853–3860 (2002).

    Article  CAS  Google Scholar 

  14. Lortat-Jacob, H., Grosdidier, A. & Imberty, A. Structural diversity of heparan sulfate binding domains in chemokines. Proc. Natl. Acad. Sci. USA 99, 1229–1234 (2002).

    Article  CAS  Google Scholar 

  15. Lau, E.K., Allen, S., Hsu, A.R. & Handel, T.M. Chemokine-receptor interactions: GPCRs, glycosaminoglycans and viral chemokine binding proteins. Adv. Protein Chem. 68, 351–391 (2004).

    Article  CAS  Google Scholar 

  16. Lander, A.D., Nie, Q. & Wan, F.Y. Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796 (2002).

    Article  CAS  Google Scholar 

  17. Rot, A. Neutrophil attractant/activation protein-1 (interleukin-8) induces in vitro neutrophil migration by haptotactic mechanism. Eur. J. Immunol. 23, 303–306 (1993).

    Article  CAS  Google Scholar 

  18. Wiedermann, C.J. et al. Monocyte haptotaxis induced by the RANTES chemokine. Curr. Biol. 3, 735–739 (1993).

    Article  CAS  Google Scholar 

  19. Orban, P.C., Chui, D. & Marth, J.D. Tissue- and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6861–6865 (1992).

    Article  CAS  Google Scholar 

  20. Grobe, K. et al. Heparan sulfate and development: Differential roles of the N-acetylglucosamine N-deacetylase/N-sulfotransferase isozymes. Biochim. Biophys. Acta Gen. Subj. 1573, 209–215 (2002).

    Article  CAS  Google Scholar 

  21. Holmborn, K. et al. Heparan sulfate synthesized by mouse embryonic stem cells deficient in NDST1 and NDST2 is 6-O-sulfated but contains no N-sulfate groups. J. Biol. Chem. 279, 42355–42358 (2004).

    Article  CAS  Google Scholar 

  22. Ringvall, M. et al. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J. Biol. Chem. 275, 25926–25930 (2000).

    Article  CAS  Google Scholar 

  23. Grobe, K. et al. Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function. Development, advance online publication, 14 July 2005 10.1242/dev.01935.

  24. Fan, G. et al. Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett. 467, 7–11 (2000).

    Article  CAS  Google Scholar 

  25. Forsberg, E. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773–776 (1999).

    Article  CAS  Google Scholar 

  26. Humphries, D.E. et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400, 769–772 (1999).

    Article  CAS  Google Scholar 

  27. Ledin, J. et al. Heparan sulfate structure in mice with genetically modified heparan sulfate production. J. Biol. Chem. 279, 42732–42741 (2004).

    Article  CAS  Google Scholar 

  28. Kisanuki, Y.Y. et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230–242 (2001).

    Article  CAS  Google Scholar 

  29. Bame, K.J. & Esko, J.D. Undersulfated heparan sulfate in a Chinese hamster ovary cell mutant defective in heparan sulfate N-sulfotransferase. J. Biol. Chem. 264, 8059–8065 (1989).

    CAS  PubMed  Google Scholar 

  30. Toyoda, H., Nagashima, T., Hirata, R., Toida, T. & Imanari, T. Sensitive high-performance liquid chromatographic method with detection for the determination of heparin and heparan sulfate in biological samples: application to human urinary heparan sulfate. J. Chromatogr. B Biomed. Sci. Appl. 704, 19–24 (1997).

    Article  CAS  Google Scholar 

  31. Esko, J.D. & Selleck, S.B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002).

    Article  CAS  Google Scholar 

  32. Kanegae, Y. et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res. 23, 3816–3821 (1995).

    Article  CAS  Google Scholar 

  33. Ishihara, M., Kiefer, M.C., Barr, P.J., Guo, Y. & Swiedler, S.J. Selection of COS cell mutants defective in the biosynthesis of heparan sulfate proteoglycan. Anal. Biochem. 206, 400–407 (1992).

    Article  CAS  Google Scholar 

  34. Norgard-Sumnicht, K. & Varki, A. Endothelial heparan sulfate proteoglycans that bind to L-selectin have glucosamine residues with unsubstituted amino groups. J. Biol. Chem. 270, 12012–12024 (1995).

    Article  CAS  Google Scholar 

  35. Koenig, A., Norgard-Sumnicht, K., Linhardt, R. & Varki, A. Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J. Clin. Invest. 101, 877–889 (1998).

    Article  CAS  Google Scholar 

  36. Giuffre, L. et al. Monocyte adhesion to activated aortic endothelium: role of L-selectin and heparan sulfate proteoglycans. J. Cell Biol. 136, 945–956 (1997).

    Article  CAS  Google Scholar 

  37. Tedder, T.F., Steeber, D.A. & Pizcueta, P. L-selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites. J. Exp. Med. 181, 2259–2264 (1995).

    Article  CAS  Google Scholar 

  38. Middleton, J. et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91, 385–395 (1997).

    Article  CAS  Google Scholar 

  39. Schnitzer, J.E. & Oh, P. Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J. Biol. Chem. 269, 6072–6082 (1994).

    CAS  PubMed  Google Scholar 

  40. McEver, R.P. & Cummings, R.D. Role of PSGL-1 binding to selectins in leukocyte recruitment. J. Clin. Invest. 100, 485–492 (1997).

    Article  CAS  Google Scholar 

  41. Sperandio, M. et al. P-selectin glycoprotein ligand-1 mediates L-selectin-dependent leukocyte rolling in venules. J. Exp. Med. 197, 1355–1363 (2003).

    Article  CAS  Google Scholar 

  42. Hayward, R., Nossuli, T.O. & Lefer, A.M. Heparinase III exerts endothelial and cardioprotective effects in feline myocardial ischemia-reperfusion injury. J. Pharmacol. Exp. Ther. 283, 1032–1038 (1997).

    CAS  PubMed  Google Scholar 

  43. Xie, X. et al. Inhibition of selectin-mediated cell adhesion and prevention of acute inflammation by nonanticoagulant sulfated saccharides - Studies with carboxyl-reduced and sulfated heparin and with trestatin A sulfate. J. Biol. Chem. 275, 34818–34825 (2000).

    Article  CAS  Google Scholar 

  44. Kawashima, H. et al. Collagen XVIII, a basement membrane heparan sulfate proteoglycan, interacts with L-selectin and monocyte chemoattractant protein-1. J. Biol. Chem. 278, 13069–13076 (2003).

    Article  CAS  Google Scholar 

  45. Tyrrell, D.J., Horne, A.P., Holme, K.R., Preuss, J.M. & Page, C.P. Heparin in inflammation: potential therapeutic applications beyond anticoagulation. Adv. Pharmacol. 46, 151–208 (1999).

    Article  CAS  Google Scholar 

  46. Mayadas, T.N., Johnson, R.C., Rayburn, H., Hynes, R.O. & Wagner, D.D. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 74, 541–554 (1993).

    Article  CAS  Google Scholar 

  47. Xia, L. et al. P-selectin glycoprotein ligand-1-deficient mice have impaired leukocyte tethering to E-selectin under flow. J. Clin. Invest. 109, 939–950 (2002).

    Article  CAS  Google Scholar 

  48. Humphries, D.E., Lanciotti, J. & Karlinsky, J.B. cDNA cloning, genomic organization and chromosomal localization of human heparan glucosaminyl N-deacetylase/N-sulphotransferase-2. Biochem. J. 332, 303–307 (1998).

    Article  CAS  Google Scholar 

  49. Marelli-Berg, F.M., Peek, E., Lidington, E.A., Stauss, H.J. & Lechler, R.I. Isolation of endothelial cells from murine tissue. J. Immunol. Methods 244, 205–215 (2000).

    Article  CAS  Google Scholar 

  50. Heffernan, M. & Dennis, J.W. Polyoma and hamster papovavirus large T antigen-mediated replication of expression shuttle vectors in Chinese hamster ovary cells. Nucleic Acids Res. 19, 85–92 (1991).

    Article  CAS  Google Scholar 

  51. Aikawa, J., Grobe, K., Tsujimoto, M. & Esko, J.D. Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/N-sulfotransferase: structure and activity of the fourth member, NDST4. J. Biol. Chem. 276, 5876–5882 (2001).

    Article  CAS  Google Scholar 

  52. Bai, X. & Esko, J.D. An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation. J. Biol. Chem. 271, 17711–17717 (1996).

    Article  CAS  Google Scholar 

  53. Romano, M. et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6, 315–325 (1997).

    Article  CAS  Google Scholar 

  54. Forlow, S.B. & Ley, K. Selectin-independent leukocyte rolling and adhesion in mice deficient in E-, P-, and L-selectin and ICAM-1. Am. J. Physiol. Heart Circ. Physiol. 280, H634–H641 (2001).

    Article  CAS  Google Scholar 

  55. Allport, J.R. et al. Neutrophils from MMP-9- or neutrophil elastase-deficient mice show no defect in transendothelial migration under flow in vitro. J. Leukoc. Biol. 71, 821–828 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Castagnola, M. Raguseo and L. Sikora for technical help; D. Ditto and D. Le of the Hematology Core and N. Varki of the Histology Core (National Institutes of Health, HL57345); and A. Varki for comments. Supported by the US Department of Veteran's Affairs (Research Career Development Award to M.M.F.) and National Institutes of Health (HL57345, HL23594 and GM33063 to J.D.E. and AI35796 and AI50498 Core C to P.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D Esko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Multiple roles of heparan sulfate in leukocyte rolling and chemokine presentation. (PDF 1118 kb)

Supplementary Table 1

Hematology values for wild-type and mutant mice. (PDF 18 kb)

Supplementary Table 2

Hemostatic analysis of mutant and wild-type mice. (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Fuster, M., Sriramarao, P. et al. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol 6, 902–910 (2005). https://doi.org/10.1038/ni1233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing