Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch

Abstract

Antigen-experienced memory T cells acquire effector function with innate-like kinetics; however, the metabolic requirements of these cells are unknown. Here we show that rapid interferon-γ (IFN-γ) production of effector memory (EM) CD8+ T cells, activated through stimulation mediated by the T cell antigen receptor (TCR) and the costimulatory receptor CD28 or through cognate interactions, was linked to increased glycolytic flux. EM CD8+ T cells exhibited more glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity at early time points, before proliferation commenced, than did naive cells activated under similar conditions. CD28 signaling via the serine-threonine kinase Akt and the metabolic-checkpoint kinase mTORC2 was needed to sustain TCR-mediated immediate-early glycolysis. Unlike glycolysis in proliferating cells, immediate-early glycolysis in memory CD8+ T cells was rapamycin insensitive. Thus, CD8+ memory T cells have an Akt-dependent 'imprinted' glycolytic potential that is required for efficient immediate-early IFN-γ recall responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Naive and EM CD8+ T cells display distinct oxidative and glycolytic capacities.
Figure 2: The activation-induced immediate-early glycolytic switch is intrinsic to EM CD8+ T cells.
Figure 3: The immediate-early glycolytic switch in EM CD8+ T cells is insensitive to inhibition of mTORC1 but is dependent on Akt activity.
Figure 4: The immediate-early glycolytic switch is dependent on mTORC2 signaling.
Figure 5: IFN-γ synthesis by EM CD8+ T cells is dependent on immediate-early glycolysis.
Figure 6: The immediate-early glycolytic switch is a common feature of memory CD8+ T cell subpopulations.
Figure 7: IFN-γ production by EBV-specific memory CD8+ T cells is diminished in the presence of 2-DG.
Figure 8: Chromatin remodeling of the IFNG promoter in EM CD8+ T cells.

Similar content being viewed by others

References

  1. Haring, J.S., Badovinac, V.P. & Harty, J.T. Inflaming the CD8+ T cell response. Immunity 25, 19–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Kaech, S.M. & Wherry, E.J. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27, 393–405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fox, C.J., Hammerman, P.S. & Thompson, C.B. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5, 844–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Plas, D.R., Rathmell, J.C. & Thompson, C.B. Homeostatic control of lymphocyte survival: potential origins and implications. Nat. Immunol. 3, 515–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Frauwirth, K.A. & Thompson, C.B. Regulation of T lymphocyte metabolism. J. Immunol. 172, 4661–4665 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Frauwirth, K.A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Jacobs, S.R. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476–4486 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Greiner, E.F., Guppy, M. & Brand, K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J. Biol. Chem. 269, 31484–31490 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Maciver, N.J. et al. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J. Leukoc. Biol. 84, 949–957 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Board, M., Humm, S. & Newsholme, E.A. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem. J. 265, 503–509 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lunt, S.Y. & Vander Heiden, M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Masopust, D. & Picker, L.J. Hidden memories: frontline memory T cells and early pathogen interception. J. Immunol. 188, 5811–5817 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Geginat, J., Lanzavecchia, A. & Sallusto, F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101, 4260–4266 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Klonowski, K.D. et al. Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20, 551–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, M. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 292, C125–C136 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. van der Windt, G.J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Sirover, M.A. Subcellular dynamics of multifunctional protein regulation: mechanisms of GAPDH intracellular translocation. J. Cell. Biochem. 113, 2193–2200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mazzola, J.L. & Sirover, M.A. Subcellular localization of human glyceraldehyde-3-phosphate dehydrogenase is independent of its glycolytic function. Biochim. Biophys. Acta 1622, 50–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Dziurla, R. et al. Effects of hypoxia and/or lack of glucose on cellular energy metabolism and cytokine production in stimulated human CD4+ T lymphocytes. Immunol. Lett. 131, 97–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Kusner, L.L., Sarthy, V.P. & Mohr, S. Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase: a role in high glucose-induced apoptosis in retinal Muller cells. Invest. Ophthalmol. Vis. Sci. 45, 1553–1561 (2004).

    PubMed  Google Scholar 

  24. Soond, D.R. et al. PI3K p110δ regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. Blood 115, 2203–2213 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Brunn, G.J. et al. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 15, 5256–5267 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Finlay, D.K. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441–2453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi, L.Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guertin, D.A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 11, 859–871 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Gan, X., Wang, J., Su, B. & Wu, D. Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 286, 10998–11002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhagwat, S.V. et al. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Mol. Cancer Ther. 10, 1394–1406 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Jameson, S.C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hansen, S.G. et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med. 15, 293–299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harari, A., Enders, F.B., Cellerai, C., Bart, P.A. & Pantaleo, G. Distinct profiles of cytotoxic granules in memory CD8 T cells correlate with function, differentiation stage, and antigen exposure. J. Virol. 83, 2862–2871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cham, C.M. & Gajewski, T.F. Glucose availability regulates IFN-γ production and p70S6 kinase activation in CD8+ effector T cells. J. Immunol. 174, 4670–4677 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Chang, C.H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Helms, T. et al. Direct visualization of cytokine-producing recall antigen-specific CD4 memory T cells in healthy individuals and HIV patients. J. Immunol. 164, 3723–3732 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Kong, S., McBurney, M.W. & Fang, D. Sirtuin 1 in immune regulation and autoimmunity. Immunol. Cell Biol. 90, 6–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Fann, M. et al. Histone acetylation is associated with differential gene expression in the rapid and robust memory CD8+ T-cell response. Blood 108, 3363–3370 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weng, N.P., Araki, Y. & Subedi, K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat. Rev. Immunol. 12, 306–315 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Juelich, T. et al. Interplay between chromatin remodeling and epigenetic changes during lineage-specific commitment to granzyme B expression. J. Immunol. 183, 7063–7072 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Zediak, V.P., Johnnidis, J.B., Wherry, E.J. & Berger, S.L. Cutting edge: persistently open chromatin at effector gene loci in resting memory CD8+ T cells independent of transcriptional status. J. Immunol. 186, 2705–2709 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Wellen, K.E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mazurek, S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int. J. Biochem. Cell Biol. 43, 969–980 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Borowski, A.B. et al. Memory CD8+ T cells require CD28 costimulation. J. Immunol. 179, 6494–6503 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Grujic, M. et al. The role of CD80/CD86 in generation and maintenance of functional virus-specific CD8+ T cells in mice infected with lymphocytic choriomeningitis virus. J. Immunol. 185, 1730–1743 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Hagiwara, A. et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 15, 725–738 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Sakamoto, K. & Holman, G.D. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab. 295, E29–E37 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsumoto, Y. et al. Upregulation of the transcript level of GTPase activating protein KIAA0603 in T cells from patients with atopic dermatitis. FEBS Lett. 572, 135–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Lu, C. & Thompson, C.B. Metabolic regulation of epigenetics. Cell Metab. 16, 9–17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bihl, F.K. et al. Simultaneous assessment of cytotoxic T lymphocyte responses against multiple viral infections by combined usage of optimal epitope matrices, anti-CD3 mAb T-cell expansion and “RecycleSpot”. J. Transl. Med. 3, 20 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Palmer and J.A. Schifferli for discussion of data; E. Traunecker and T. Krebs for technical support with cell sorting; B. Erne for help with imaging; A. Buser (University Hospital Basel) for buffy coats; and M. Stern for statistical help. Supported by the Swiss National Science Foundation (31003A_135677 to C.H., 323630-128881 to P.M.G. and 323530-139181 to M.F.) and Roche (S.D.).

Author information

Authors and Affiliations

Authors

Contributions

P.M.G. designed, did and analyzed most experiments; G.R.B. designed, did and analyzed experiments and helped write the manuscript; L.R., M.F., S.D., A.J., B.D. and G.H. designed, did and analyzed experiments; and C.H. initiated and oversaw the study, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Christoph Hess.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 2305 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubser, P., Bantug, G., Razik, L. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat Immunol 14, 1064–1072 (2013). https://doi.org/10.1038/ni.2687

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing