Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation

Abstract

The location of embryonic lymph node development is determined by the initial clustering of lymphoid tissue–inducer (LTi) cells. Here we demonstrate that both the chemokine CXCL13 and the chemokine CCL21 attracted LTi cells at embryonic days 12.5–14.5 and that initial clustering depended exclusively on CXCL13. Retinoic acid (RA) induced early CXCL13 expression in stromal organizer cells independently of lymphotoxin signaling. Notably, neurons adjacent to the lymph node anlagen expressed enzymes essential for RA synthesis. Furthermore, stimulation of parasymphathetic neural output in adults led to RA receptor (RAR)-dependent induction of CXCL13 in the gut. Therefore, our data show that the initiation of lymph node development is controlled by RA-mediated expression of CXCL13 and suggest that RA may be provided by adjacent neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific migration of LTi cells and precursors toward chemokines.
Figure 2: CXCL13 and CCL21 are present in E13.5 developing lymph nodes.
Figure 3: Lymph node development and CXCL13 expression occur independent of LTβR signaling.
Figure 4: RA induces CXCL13 expression via RARβ.
Figure 5: Raldh2−/− E14.5 embryos lack most lymph node anlagen.
Figure 6: RALDH2 is localized in neurons adjacent to lymph node anlagen.
Figure 7: Stimulation of neurons leads to CXCL13 expression.

Similar content being viewed by others

References

  1. Mebius, R.E., Streeter, P.R., Michie, S., Butcher, E.C. & Weissman, I.L. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+CD3 cells to colonize lymph nodes. Proc. Natl. Acad. Sci. USA 93, 11019–11024 (1996).

    Article  CAS  Google Scholar 

  2. Mebius, R.E. Organogenesis of lymphoid tissues. Nat. Rev. Immunol. 3, 292–303 (2003).

    Article  CAS  Google Scholar 

  3. Cupedo, T. & Mebius, R.E. Cellular interactions in lymph node development. J. Immunol. 174, 21–25 (2005).

    Article  CAS  Google Scholar 

  4. Yoshida, H. et al. Expression of α4β7 integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J. Immunol. 167, 2511–2521 (2001).

    Article  CAS  Google Scholar 

  5. Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).

    Article  CAS  Google Scholar 

  6. Mebius, R.E., Rennert, P. & Weissman, I.L. Developing lymph nodes collect CD4+CD3 LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    Article  CAS  Google Scholar 

  7. Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    Article  CAS  Google Scholar 

  8. Boos, M.D., Yokota, Y., Eberl, G. & Kee, B.L. Mature natural killer cell and lymphoid tissue–inducing cell development requires Id2–mediated suppression of E protein activity. J. Exp. Med. 204, 1119–1130 (2007).

    Article  CAS  Google Scholar 

  9. Yoshida, H. et al. Different cytokines induce surface lymphotoxin-αβ on IL-7 receptor-α cells that differentially engender lymph nodes and Peyer's patches. Immunity 17, 823–833 (2002).

    Article  CAS  Google Scholar 

  10. Meier, D. et al. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 26, 643–654 (2007).

    Article  CAS  Google Scholar 

  11. Cupedo, T. et al. Presumptive lymph node organizers are differentially represented in developing mesenteric and peripheral nodes. J. Immunol. 173, 2968–2975 (2004).

    Article  CAS  Google Scholar 

  12. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  CAS  Google Scholar 

  13. Rennert, P.D., James, D., Mackay, F., Browning, J.L. & Hochman, P.S. Lymph node genesis is induced by signaling through the lymphotoxin β receptor. Immunity 9, 71–79 (1998).

    Article  CAS  Google Scholar 

  14. Vondenhoff, M.F. et al. LTβR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J. Immunol. 182, 5439–5445 (2009).

    Article  CAS  Google Scholar 

  15. Luther, S.A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J. Immunol. 169, 424–433 (2002).

    Article  CAS  Google Scholar 

  16. Luther, S.A., Ansel, K.M. & Cyster, J.G. Overlapping roles of CXCL13, interleukin 7 receptor α and CCR7 ligands in lymph node development. J. Exp. Med. 197, 1191–1198 (2003).

    Article  CAS  Google Scholar 

  17. Ansel, K.M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    Article  CAS  Google Scholar 

  18. Ohl, L. et al. Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J. Exp. Med. 197, 1199–1204 (2003).

    Article  CAS  Google Scholar 

  19. Veiga–Fernandes, H. et al. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis. Nature 446, 547–551 (2007).

    Article  Google Scholar 

  20. Niederreither, K. et al. The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development 130, 2525–2534 (2003).

    Article  CAS  Google Scholar 

  21. Vermot, J. et al. Retinaldehyde dehydrogenase 2 and Hoxc8 are required in the murine brachial spinal cord for the specification of Lim1+ motoneurons and the correct distribution of Islet1+ motoneurons. Development 132, 1611–1621 (2005).

    Article  CAS  Google Scholar 

  22. Niederreither, K. & Dolle, P. Retinoic acid in development: towards an integrated view. Nat. Rev. Genet. 9, 541–553 (2008).

    Article  CAS  Google Scholar 

  23. Mora, J.R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    Article  CAS  Google Scholar 

  24. Johansson–Lindbom, B. & Agace, W.W. Generation of gut-homing T cells and their localization to the small intestinal mucosa. Immunol. Rev. 215, 226–242 (2007).

    Article  Google Scholar 

  25. Mebius, R.E. Vitamins in control of lymphocyte migration. Nat. Immunol. 8, 229–230 (2007).

    Article  CAS  Google Scholar 

  26. Hammerschmidt, S.I. et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J. Exp. Med. 205, 2483–2490 (2008).

    Article  CAS  Google Scholar 

  27. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  Google Scholar 

  28. Mebius, R.E. et al. The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3 cells, as well as macrophages. J. Immunol. 166, 6593–6601 (2001).

    Article  CAS  Google Scholar 

  29. Vondenhoff, M.F. et al. Separation of splenic red and white pulp occurs before birth in a LTαβ-independent manner. J. Leukoc. Biol. 84, 152–161 (2008).

    Article  CAS  Google Scholar 

  30. Schug, T.T., Berry, D.C., Shaw, N.S., Travis, S.N. & Noy, N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129, 723–733 (2007).

    Article  CAS  Google Scholar 

  31. Li, Y., Hashimoto, Y., Agadir, A., Kagechika, H. & Zhang, X. Identification of a novel class of retinoic acid receptor β-selective retinoid antagonists and their inhibitory effects on AP-1 activity and retinoic acid-induced apoptosis in human breast cancer cells. J. Biol. Chem. 274, 15360–15366 (1999).

    Article  CAS  Google Scholar 

  32. Svensson, M. et al. Retinoic acid receptor signaling levels and antigen dose regulate gut homing receptor expression on CD8+ T cells. Mucosal Immunol 1, 38–48 (2008).

    Article  CAS  Google Scholar 

  33. Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat. Genet. 21, 444–448 (1999).

    Article  CAS  Google Scholar 

  34. Niederreither, K. et al. Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse. Development 128, 1019–1031 (2001).

    CAS  PubMed  Google Scholar 

  35. de Jonge, W.J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2–STAT3 signaling pathway. Nat. Immunol. 6, 844–851 (2005).

    Article  CAS  Google Scholar 

  36. Borovikova, L.V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    Article  CAS  Google Scholar 

  37. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  CAS  Google Scholar 

  38. Van Der Zanden, E.P., Boeckxstaens, G.E. & de Jonge, W.J. The vagus nerve as a modulator of intestinal inflammation. Neurogastroenterol. Motil. 21, 6–17 (2009).

    Article  CAS  Google Scholar 

  39. Tracey, K.J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 117, 289–296 (2007).

    Article  CAS  Google Scholar 

  40. Magliozzi, R., Columba-Cabezas, S., Serafini, B. & Aloisi, F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 148, 11–23 (2004).

    Article  CAS  Google Scholar 

  41. Wengner, A.M. et al. CXCR5- and CCR7-dependent lymphoid neogenesis in a murine model of chronic antigen-induced arthritis. Arthritis Rheum. 56, 3271–3283 (2007).

    Article  CAS  Google Scholar 

  42. Meraouna, A. et al. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood 108, 432–440 (2006).

    Article  CAS  Google Scholar 

  43. Steinmetz, O.M. et al. BCA-1/CXCL13 expression is associated with CXCR5-positive B-cell cluster formation in acute renal transplant rejection. Kidney Int. 67, 1616–1621 (2005).

    Article  CAS  Google Scholar 

  44. Bagaeva, L.V., Rao, P., Powers, J.M. & Segal, B.M. CXC chemokine ligand 13 plays a role in experimental autoimmune encephalomyelitis. J. Immunol. 176, 7676–7685 (2006).

    Article  CAS  Google Scholar 

  45. Grimsholm, O., Guo, Y., Ny, T. & Forsgren, S. Expression patterns of neurotrophins and neurotrophin receptors in articular chondrocytes and inflammatory infiltrates in knee joint arthritis. Cells Tissues Organs 188, 299–309 (2008).

    Article  CAS  Google Scholar 

  46. Sugiura, H., Omoto, M., Hirota, Y., Danno, K. & Uehara, M. Density and fine structure of peripheral nerves in various skin lesions of atopic dermatitis. Arch. Dermatol. Res. 289, 125–131 (1997).

    Article  CAS  Google Scholar 

  47. Batchelor, P.E., Wills, T.E., Hewa, A.P., Porritt, M.J. & Howells, D.W. Stimulation of axonal sprouting by trophic factors immobilized within the wound core. Brain Res. 1209, 49–56 (2008).

    Article  CAS  Google Scholar 

  48. Manzo, A. et al. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur. J. Immunol. 35, 1347–1359 (2005).

    Article  CAS  Google Scholar 

  49. Moyron–Quiroz, J.E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10, 927–934 (2004).

    Article  Google Scholar 

  50. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 0034.1–0034.11 (2002).

    Article  Google Scholar 

  51. Cupedo, T. et al. Initiation of cellular organization in lymph nodes is regulated by non–B cell–derived signals and is not dependent on CXC chemokine ligand 13. J. Immunol. 173, 4889–4896 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank animal caretakers for care of the animals; G. Kraal and T. Geijtenbeek for critically reading the manuscript; R. Molenaar for help; H. Kalay for labeling antibodies; D. Littman (Skirball Institute of Biomolecular Medicine), S. Nishikawa (Riken Center for Developmental Biology) and K. van Gisbergen (Academic Medical Center, Amsterdam) for antibodies; and J. van der Meulen (Centraal Bureau voor de Statistiek, The Netherlands) for help with statistical analysis. Supported by the US National Institutes of Health (HL69409 and AI072689 to T.D.R.) and the Netherlands Organization for Scientific Research (VIDI grant 016.096.310 to W.J.d.J.; VICI grant 918.56.612 to R.E.M. and S.A.v.d.P.; and Genomics grant 050-10-120 to R.E.M. and M.F.V.).

Author information

Authors and Affiliations

Authors

Contributions

S.A.v.d.P., B.J.O., M.F.V., G.G., M.G., W.J.d.J. and P.B. did the experiments and data analysis; K.K. and T.D.R. provided the Cxcl13−/− embryos; U.E.H. and M.L. provided the Cxcr5−/− embryos; K.N. provided the Raldh2−/− embryos; R.B., K.S. and W.W.A. provided the DR5 embryos; S.A.v.d.P. and R.E.M. designed the experiments; S.A.v.d.P., T.D.R., and R.E.M. wrote the manuscript; and R.E.M. directed the study.

Corresponding author

Correspondence to Reina E Mebius.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–2 (PDF 575 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Pavert, S., Olivier, B., Goverse, G. et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat Immunol 10, 1193–1199 (2009). https://doi.org/10.1038/ni.1789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing