Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Selectivity and therapeutic inhibition of kinases: to be or not to be?

Abstract

Protein kinases, which serve critical functions in signaling pathways in all cells, are popular therapeutic targets. At present, eight kinase inhibitors have been approved in the United States, each of which shows nanomolar potency. Although the initial goal was to generate inhibitors with a high degree of selectivity, recent experience has revealed that many of these approved compounds target more than one kinase. Surprisingly, this promiscuity is less problematic than one would have imagined; indeed, it opens new therapeutic opportunities. In this Perspective, we discuss the present status of Janus kinase inhibitors—a new class of immunosuppressive drugs—and the advantages and disadvantages of selectively inhibiting this class of kinase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The kinome binding maps of seven of the eight FDA-approved kinase inhibitors (sunitinib, sorafenib, imatinib, dasatinib, erlotinib, gefitinib and lapatinib), compared to the pan-inhibitor staurosporine (which affects more than 250 kinases) and to the investigational protein kinase inhibitors CP-690550 and VX-680.
Figure 2: Targeting cytokine signaling pathways using Jak inhibitors.

Similar content being viewed by others

References

  1. Fischer, E.H. & Krebs, E.G. Relationship of structure to function of muscle phosphorylase. Fed. Proc. 25, 1511–1520 (1966).

    CAS  PubMed  Google Scholar 

  2. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Hunter, T. A thousand and one protein kinases. Cell 50, 823–829 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Pawson, T. Protein-tyrosine kinases. Getting down to specifics. Nature 373, 477–478 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Pawson, T. Protein modules and signalling networks. Nature 373, 573–580 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Schindler, T. et al. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Daley, G.Q., Van Etten, R.A. & Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247, 824–830 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Druker, B.J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561–566 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. O'Brien, S.G. et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 348, 994–1004 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Druker, B.J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Geyer, C.E. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 355, 2733–2743 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Karaman, M.W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Cools, J. et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. 348, 1201–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Simon, M.P. et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat. Genet. 15, 95–98 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Baroni, S.S. et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N. Engl. J. Med. 354, 2667–2676 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Louvet, C. et al. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc. Natl. Acad. Sci. USA 105, 18895–18900 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gorre, M.E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Azam, M., Seeliger, M.A., Gray, N.S., Kuriyan, J. & Daley, G.Q. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat. Struct. Mol. Biol. 15, 1109–1118 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, J.C. et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Macchi, P. et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Russell, S.M. et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Karaghiosoff, M. et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 13, 549–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Duerr, R.H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burton, P.R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Leonardi, C.L. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371, 1665–1674 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Changelian, P.S. et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302, 875–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Kremer, J.M. et al. A randomized, double-blind placebo-controlled trial of 3 dose levels of CP-690,550 versus placebo in the treatment of active rheumatoid arthritis. Arthritis Rheum. 54, 4116 (2006).

    Google Scholar 

  30. Wilkinson, B., Chow, V., LaBadie, R., Zwillich, S.H. & Cohen, S. Co-administration of an oral JAK inhibitor CP-690,550 and methotrexate is well tolerated in patients with rheumatoid arthritis. Arthritis Rheum. 58, S297 (2008).

    Google Scholar 

  31. Chan, G., Cunshan, W., Boy, M., Chow, V. & Herron, J. Dose-dependent reduction in psoriasis severity as evidence of immunosuppressive activity of an oral Jak3 inhibitor in humans. Am. J. Transplant. 6, S87 (2006).

    Google Scholar 

  32. van Gurp, E. et al. Phase 1 dose-escalation study of CP-690 550 in stable renal allograft recipients: preliminary findings of safety, tolerability, effects on lymphocyte subsets and pharmacokinetics. Am. J. Transplant. 8, 1711–1718 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Parganas, E. et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93, 385–395 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Baxter, E.J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. James, C. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144–1148 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Kralovics, R. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352, 1779–1790 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Levine, R.L. et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7, 387–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Geron, I. et al. Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell 13, 321–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Wernig, G. et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 13, 311–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Manshouri, T. et al. The JAK kinase inhibitor CP-690,550 suppresses the growth of human polycythemia vera cells carrying the JAK2V617F mutation. Cancer Sci. 99, 1265–1273 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Williams, W. et al. A randomized placebo-controlled study of INCB018424, a selective Janus kinase1&2 (JAK1&2) inhibitor in rheumatoid arthritis (RA). Arthritis Rheum. 58, S431 (2008).

    Google Scholar 

  42. Weinblatt, M.E. et al. Treatment of rheumatoid arthritis with a syk kinase inhibitor: a twelve-week, randomized, placebo-controlled trial. Arthritis Rheum. 58, 3309–3318 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Engelman, J.A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Apsel, B. et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol. 4, 691–699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamran Ghoreschi or John J O'Shea.

Ethics declarations

Competing interests

The US National Institutes of Health and J.J.O. hold a patent related to Janus family kinases and identification of immune modulators, and have a Collaborative Research Agreement and Development Award with Pfizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoreschi, K., Laurence, A. & O'Shea, J. Selectivity and therapeutic inhibition of kinases: to be or not to be?. Nat Immunol 10, 356–360 (2009). https://doi.org/10.1038/ni.1701

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1701

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing