Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding

Abstract

Genome-wide association studies have identified thousands of SNPs associated with predisposition to various diseases, including prostate cancer. However, the mechanistic roles of these SNPs remain poorly defined, particularly for noncoding polymorphisms. Here we find that the prostate cancer risk-associated SNP rs339331 at 6q22 lies within a functional HOXB13-binding site. The risk-associated T allele at rs339331 increases binding of HOXB13 to a transcriptional enhancer, conferring allele-specific upregulation of the rs339331-associated gene RFX6. Suppression of RFX6 diminishes prostate cancer cell proliferation, migration and invasion. Clinical data indicate that RFX6 upregulation in human prostate cancers correlates with tumor progression, metastasis and risk of biochemical relapse. Finally, we observe a significant association between the risk-associated T allele at rs339331 and increased RFX6 mRNA levels in human prostate tumors. Together, our results suggest that rs339331 affects prostate cancer risk by altering RFX6 expression through a functional interaction with the prostate cancer susceptibility gene HOXB13.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The prostate cancer risk-associated SNP rs339331 alters a HOXB13-binding site, and the T risk allele of rs339331 enhances HOXB13 DNA-binding affinity.
Figure 2: Allele-specific differences in HOXB13 chromatin binding and rs339331 enhancer activity at the prostate cancer 6q22 risk locus.
Figure 3: rs339331 confers HOXB13-regulated allelic imbalance in RFX6 expression.
Figure 4: The rs339331-associated gene RFX6 is a potential prostate cancer susceptibility gene with effects on cellular phenotypes related to tumor-associated properties.
Figure 5: Associations between rs339331 genotype, RFX6 expression and prostate cancer risk and severity.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Sequence Read Archive

References

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  Google Scholar 

  2. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000).

    Article  CAS  Google Scholar 

  3. Eeles, R.A. et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat. Genet. 45, 385–391 (2013).

    Article  CAS  Google Scholar 

  4. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  Google Scholar 

  5. Freedman, M.L. et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nat. Genet. 43, 513–518 (2011).

    Article  CAS  Google Scholar 

  6. Ward, L.D. & Kellis, M. Interpreting noncoding genetic variation in complex traits and human disease. Nat. Biotechnol. 30, 1095–1106 (2012).

    Article  CAS  Google Scholar 

  7. Cowper-Sal lari, R. et al. Breast cancer risk–associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat. Genet. 44, 1191–1198 (2012).

    Article  CAS  Google Scholar 

  8. Schödel, J. et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat. Genet. 44, 420–425 (2012).

    Article  Google Scholar 

  9. Economides, K.D. & Capecchi, M.R. Hoxb13 is required for normal differentiation and secretory function of the ventral prostate. Development 130, 2061–2069 (2003).

    Article  CAS  Google Scholar 

  10. Kim, Y.R. et al. HOXB13 downregulates intracellular zinc and increases NF-κB signaling to promote prostate cancer metastasis. Oncogene doi:10.1038/onc.2013.404 (7 October 2013).

    Article  CAS  Google Scholar 

  11. Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10, R130 (2009).

    Article  Google Scholar 

  12. Ewing, C.M. et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 366, 141–149 (2012).

    Article  CAS  Google Scholar 

  13. Gudmundsson, J. et al. A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat. Genet. 44, 1326–1329 (2012).

    Article  CAS  Google Scholar 

  14. Xu, J. et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum. Genet. 132, 5–14 (2013).

    Article  CAS  Google Scholar 

  15. Takata, R. et al. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat. Genet. 42, 751–754 (2010).

    Article  CAS  Google Scholar 

  16. Haiman, C.A. et al. Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet. 7, e1001387 (2011).

    Article  CAS  Google Scholar 

  17. Lindström, S. et al. Replication of five prostate cancer loci identified in an Asian population—results from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol. Biomarkers Prev. 21, 212–216 (2012).

    Article  Google Scholar 

  18. Long, Q.Z. et al. Replication and fine mapping for association of the C2orf43, FOXP4, GPRC6A and RFX6 genes with prostate cancer in the Chinese population. PLoS ONE 7, e37866 (2012).

    Article  CAS  Google Scholar 

  19. Wang, M. et al. Replication and cumulative effects of GWAS-identified genetic variations for prostate cancer in Asians: a case-control study in the ChinaPCa consortium. Carcinogenesis 33, 356–360 (2012).

    Article  Google Scholar 

  20. Xu, J. et al. Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31.2 and 19q13.4. Nat. Genet. 44, 1231–1235 (2012).

    Article  CAS  Google Scholar 

  21. Wei, G.H. et al. Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J. 29, 2147–2160 (2010).

    Article  CAS  Google Scholar 

  22. Hallikas, O. et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell 124, 47–59 (2006).

    Article  CAS  Google Scholar 

  23. Jolma, A. et al. DNA-binding specificities of human transcription factors. Cell 152, 327–339 (2013).

    Article  CAS  Google Scholar 

  24. Grant, C.E., Bailey, T.L. & Noble, W.S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article  CAS  Google Scholar 

  25. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  Google Scholar 

  26. Creyghton, M.P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA 107, 21931–21936 (2010).

    Article  CAS  Google Scholar 

  27. Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  Google Scholar 

  28. Gaulton, K.J. et al. A map of open chromatin in human pancreatic islets. Nat. Genet. 42, 255–259 (2010).

    Article  CAS  Google Scholar 

  29. Simon, J.M., Giresi, P.G., Davis, I.J. & Lieb, J.D. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat. Protoc. 7, 256–267 (2012).

    Article  CAS  Google Scholar 

  30. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  31. Thurman, R.E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  Google Scholar 

  32. Boyle, A.P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    Article  CAS  Google Scholar 

  33. He, H.H. et al. Nucleosome dynamics define transcriptional enhancers. Nat. Genet. 42, 343–347 (2010).

    Article  CAS  Google Scholar 

  34. Yu, J. et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454 (2010).

    Article  CAS  Google Scholar 

  35. Grasso, C.S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  Google Scholar 

  36. Tamura, K. et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res. 67, 5117–5125 (2007).

    Article  CAS  Google Scholar 

  37. Taylor, B.S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  Google Scholar 

  38. Smith, S.B. et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature 463, 775–780 (2010).

    Article  CAS  Google Scholar 

  39. Varambally, S. et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8, 393–406 (2005).

    Article  CAS  Google Scholar 

  40. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  Google Scholar 

  41. Szulkin, R. et al. Prostate cancer risk variants are not associated with disease progression. Prostate 72, 30–39 (2012).

    Article  CAS  Google Scholar 

  42. Akbari, M.R. et al. Association between germline HOXB13 G84E mutation and risk of prostate cancer. J. Natl. Cancer Inst. 104, 1260–1262 (2012).

    Article  CAS  Google Scholar 

  43. Laitinen, V.H. et al. HOXB13 G84E mutation in Finland: population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev. 22, 452–460 (2013).

    Article  CAS  Google Scholar 

  44. Wasserman, N.F., Aneas, I. & Nobrega, M.A. An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res. 20, 1191–1197 (2010).

    Article  CAS  Google Scholar 

  45. Sotelo, J. et al. Long-range enhancers on 8q24 regulate c-Myc. Proc. Natl. Acad. Sci. USA 107, 3001–3005 (2010).

    Article  CAS  Google Scholar 

  46. Zhang, X., Cowper-Sallari, R., Bailey, S.D., Moore, J.H. & Lupien, M. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res. 22, 1437–1446 (2012).

    Article  CAS  Google Scholar 

  47. Imbeaud, S. et al. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res. 33, e56 (2005).

    Article  Google Scholar 

  48. Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med. 15, 559–565 (2009).

    Article  CAS  Google Scholar 

  49. Korn, J.M. et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat. Genet. 40, 1253–1260 (2008).

    Article  CAS  Google Scholar 

  50. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  51. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

  52. Tuupanen, S. et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat. Genet. 41, 885–890 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Vuokila, S. Lähdesmäki, J. Träskelin and A. Viklund for technical service, M. Männikkö for DNA sequencing, M. Taipale and L. Hu for massively parallel sequencing, P. Karppinen for critically reading the manuscript and A. Juffer for providing the Linux High-Performance Computing server. We also thank the TCGA Research Network for generating the TCGA data sets for prostate adenocarcinoma. A.M. and K.Z. are funded by the Academy of Finland (135560 and 251314). J.X. is funded by Chinese National Key Basic Research Program Grant 973 (2012CB518301). This work was supported by Strategic Funds from Biocenter Oulu and the University of Oulu, Biocenter Finland, the Sigrid Jusélius Foundation, the Jane and Aatos Erkko Foundation and a China Scholarship Council fellowship, 201206300074, via Northwest Agriculture and Forestry University.

Author information

Authors and Affiliations

Authors

Contributions

G.-H.W. and J.T. conceived the study. G.-H.W. designed research. Q.H., P.G., Y.Y., J.Y., R.L. and G.-H.W. performed experiments. T.W. performed computing and clinical outcome analysis. G.-H.W. performed clinical correlations. J.F.L. and L.A.E. recruited the Swedish cohort of prostate cancer cases and performed pathological evaluation. J.S. and J.X. performed genetic analysis. M.-R.V. and M.H.V. recruited the Finnish Oulu cohort of prostate cancer cases and performed pathological evaluation. R.S. and F.W. performed association analysis in the Swedish prostate cancer GWAS cohort. J.Y. and A.J. contributed to gene cloning. K.Z. and A.M. contributed to virus production. T.V. contributed the Finnish Tampere cohort of prostate cancer cases. M.A. and M.N. performed RNA sequencing. G.-H.W. wrote the manuscript with help from Q.H. and T.W., and all authors critically revised the manuscript, interpreted data and approved the final draft.

Corresponding authors

Correspondence to Jussi Taipale or Gong-Hong Wei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 (PDF 9459 kb)

Supplementary Tables 1–12

Supplementary Tables 1–12 (XLS 301 kb)

Supplementary Data Set 1

Supplementary Data Set 1 (ZIP 484 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Q., Whitington, T., Gao, P. et al. A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding. Nat Genet 46, 126–135 (2014). https://doi.org/10.1038/ng.2862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing