Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Primer: signal transduction in rheumatic disease—a clinician's guide

Abstract

Signaling pathways enable cells to respond and adapt to environmental stimuli. For instance, extracellular ligands, such as proinflammatory cytokines or pathogen components, bind receptors on the surface of cells that trigger downstream signaling cascades driven by enzymes called kinases. Ultimately, kinases activate transcription factors that bind to DNA and alter the expression of target genes, the products of which allow the cell to respond to the initial stimulus. A variety of chronic inflammatory diseases are associated with altered cellular signaling. Some of the signal cascades that are involved in inflammation and autoimmunity include those mediated by mitogen-activated protein kinases, nuclear factor-κB, interferon regulatory factor and Toll-like receptors, NOD-like receptors and the inflammasome, and phosphatidylinositol-3-kinases. Understanding these intracellular pathways might lead to new approaches to the treatment of inflammatory disease, including the use of orally bioavailable small molecules that regulate cytokine function and production.

Key Points

  • Signal transduction is a communication system that provides information to the cell and regulates responses to environmental stress

  • Protein kinases that phosphorylate transcription factors and other molecules have a key role in signal transduction

  • Multiple signaling pathways, including those mediated by mitogen-activated protein kinases, nuclear factor-κB and others, activate immune responses and inflammation by regulating the expression of cytokines and other mediators

  • Signal transduction can potentially be targeted to treat immune-mediated diseases like rheumatoid arthritis and systemic lupus erythematosus

  • Selectivity of signal transduction inhibitors and potential adverse effects related to host defense and homeostasis represent major hurdles to drug development

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinase activity and inhibition.
Figure 2: The MAPK signaling cascade.
Figure 3: NF-κB signal transduction.
Figure 4: IRF signaling.

Similar content being viewed by others

References

  1. Tas SW et al. (2005) Signal transduction pathways and transcription factors as therapeutic targets in inflammatory disease: towards innovative antirheumatic therapy. Curr Pharm Des 11: 581–611

    Article  CAS  Google Scholar 

  2. Manning AM and Davis RJ (2003) Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2: 554–565

    Article  CAS  Google Scholar 

  3. Inoue T et al. (2006) Regulation of JNK by MKK7 in fibroblast-like synoviocytes. Arthritis Rheum 54: 2127–2135

    Article  CAS  Google Scholar 

  4. Chabaud-Riou M and Firestein GS (2004) Expression and activation of MKK3 and MKK6 in rheumatoid arthritis. Am J Pathol 164: 177–184

    Article  CAS  Google Scholar 

  5. Inoue T et al. (2005) Regulation of p38 MAPK by MAPK kinases 3 and 6 in fibroblast-like synoviocytes. J Immunol 174: 4301–4306

    Article  CAS  Google Scholar 

  6. Toh M et al. (2004) Expression of mitogen-activated protein kinase phosphatase 1, a negative regulator of the mitogen-activated protein kinases, in rheumatoid arthritis: up-regulation by interleukin-1beta and glucocorticoids. Arthritis Rheum 50: 3118–3128

    Article  CAS  Google Scholar 

  7. Schett G et al. (2000) Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum 43: 2501–2512

    Article  CAS  Google Scholar 

  8. Han Z et al. (1999) Jun N-terminal kinase in rheumatoid arthritis. J Pharmacol Exp Ther 291: 124–130

    CAS  PubMed  Google Scholar 

  9. Han Z et al. (2001) c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 108: 73–81

    Article  CAS  Google Scholar 

  10. Badger A et al. (2000) Disease-modifying activity of SB 242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis. Arthritis Rheum 43: 175–183

    Article  CAS  Google Scholar 

  11. Nishikawa M et al. (2003) Prevention of the onset and progression of collagen-induced arthritis in rats by the potent p38 mitogen-activated protein kinase inhibitor FR167653. Arthritis Rheum 48: 2670–2681

    Article  CAS  Google Scholar 

  12. Zwerina J et al. (2006) Activation of p38 MAPK is a key step in tumor necrosis factor-mediated inflammatory bone destruction. Arthritis Rheum 54: 463–472

    Article  CAS  Google Scholar 

  13. Grammer A et al. (2004) Flow cytometric assessment of the signaling status of human B lymphocytes from normal and autoimmune individuals. Arthritis Res Ther 6: 28–38

    Article  CAS  Google Scholar 

  14. Takahashi H et al. (2002) Extracellular regulated kinase and c-Jun N-terminal kinase are activated in psoriatic involved epidermis. J Dermatol Sci 30: 94–99

    Article  CAS  Google Scholar 

  15. Zenz R et al. (2005) Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437: 369–375

    Article  CAS  Google Scholar 

  16. Johansen C et al. (2005) The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin. Br J Dermatol 152: 37–42

    Article  CAS  Google Scholar 

  17. Hollenbach E et al. (2005) Inhibition of RICK/nuclear factor-kappa B and p38 signaling attenuates the inflammatory response in a murine model of Crohn disease. J Biol Chem 280: 14981–14988

    Article  CAS  Google Scholar 

  18. Escott K et al. (2000) Effect of the p38 kinase inhibitor, SB 203580, on allergic airway inflammation in the rat. Br J Pharmacol 131: 173–176

    Article  CAS  Google Scholar 

  19. Aupperle K et al. (2001) NF-kappa B regulation by I kappa B kinase-2 in rheumatoid arthritis synoviocytes. J Immunol 166: 2705–2711

    Article  CAS  Google Scholar 

  20. Tak PP et al. (2001) Inhibitor of nuclear factor kappaB kinase beta is a key regulator of synovial inflammation. Arthritis Rheum 44: 1897–1907

    Article  CAS  Google Scholar 

  21. Miagkov A et al. (1998) NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA 95: 13859–13864

    Article  CAS  Google Scholar 

  22. Andreakos E et al. (2003) Heterogeneous requirement of IkappaB kinase 2 for inflammatory cytokine and matrix metalloproteinase production in rheumatoid arthritis: implications for therapy. Arthritis Rheum 48: 1901–1912

    Article  CAS  Google Scholar 

  23. McIntyre KW et al. (2003) A highly selective inhibitor of I kappa B kinase, BMS-345541, blocks both joint inflammation and destruction in collagen-induced arthritis in mice. Arthritis Rheum 48: 2652–2659

    Article  CAS  Google Scholar 

  24. Hammaker D et al. (2003) Signal transduction networks in rheumatoid arthritis. Ann Rheum Dis 62: 1186–1189

    Article  Google Scholar 

  25. Diebold S et al. (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: 1529–1531

    Article  CAS  Google Scholar 

  26. Heil F et al. (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303: 1526–1529

    Article  CAS  Google Scholar 

  27. Krieg A et al. (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549

    Article  CAS  Google Scholar 

  28. Crow M (2005) Interferon pathway activation in systemic lupus erythematosus. Curr Rheumatol Rep 7: 463–468

    Article  CAS  Google Scholar 

  29. Radstake TR et al. (2004) Expression of toll-like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin-12 and interleukin-18 via interferon-gamma. Arthritis Rheum 50: 3856–3865

    Article  CAS  Google Scholar 

  30. Seibl R et al. (2003) Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am J Pathol 162: 1221–1227

    Article  CAS  Google Scholar 

  31. van der Heijden IM et al. (2000) Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides. Arthritis Rheum 43: 593–598

    Article  CAS  Google Scholar 

  32. Choe JY et al. (2003) Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by toll-like receptor 4 signaling. J Exp Med 197: 537–542

    Article  CAS  Google Scholar 

  33. Kyburz D et al. (2003) Bacterial peptidoglycans but not CpG oligodeoxynucleotides activate synovial fibroblasts by toll-like receptor signaling. Arthritis Rheum 48: 642–650

    Article  CAS  Google Scholar 

  34. Seibl R et al. (2003) Expression and regulation of Toll-like receptor 2 in rheumatoid arthritis synovium. Am J Pathol 162: 1221–1227

    Article  CAS  Google Scholar 

  35. Brentano F et al. (2005) RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis Rheum 52: 2656–2665

    Article  CAS  Google Scholar 

  36. Sharma S et al. (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300: 1148–1151

    Article  CAS  Google Scholar 

  37. Fitzgerald KA et al. (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4: 491–496

    Article  CAS  Google Scholar 

  38. Sweeney S et al. (2007) Antiviral gene expression in rheumatoid arthritis: role of IKKepsilon and interferon regulatory factor 3. Arthritis Rheum 56: 743–752

    Article  CAS  Google Scholar 

  39. Sweeney SE et al. (2005) Regulation of c-Jun phosphorylation by the I kappa B kinase-epsilon complex in fibroblast-like synoviocytes. J Immunol 174: 6424–6430

    Article  CAS  Google Scholar 

  40. Baechler E et al. (2004) The emerging role of interferon in human systemic lupus erythematosus. Curr Opin Immunol 16: 801–807

    Article  CAS  Google Scholar 

  41. Vallin H et al. (1999) Anti-double stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J Immunol 163: 6306–6313

    CAS  PubMed  Google Scholar 

  42. Rönnblom L and Alm G (2001) A pivotal role for the natural interferon alpha-producing cells (plasmacytoid dendritic cells) in the pathogenesis of lupus. J Exp Med 194: F59–F63

    Article  Google Scholar 

  43. Kaisho T and Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117: 979–987

    Article  CAS  Google Scholar 

  44. Anders HJ (2005) A Toll for lupus. Lupus 14: 417–422

    Article  CAS  Google Scholar 

  45. Lenert PS (2006) Targeting Toll-like receptor signaling in plasmacytoid dendritic cells and autoreactive B cells as a therapy for lupus. Arthritis Res Ther 8: 203

    Article  Google Scholar 

  46. Christensen S et al. (2006) Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25: 417–428

    Article  CAS  Google Scholar 

  47. Barrat F et al. (2005) Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202: 1131–1139

    Article  CAS  Google Scholar 

  48. Ronaghy A et al. (2002) Immunostimulatory DNA sequences influence the course of adjuvant arthritis. J Immunol 168: 51–56

    Article  CAS  Google Scholar 

  49. Means T et al. (2005) Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115: 407–417

    Article  CAS  Google Scholar 

  50. Weyand C et al. (2005) Vascular dendritic cells in giant cell arteritis. Ann NY Acad Sci 1062: 195–208

    Article  Google Scholar 

  51. Akira S et al. (2006) Pathogen recognition and innate immunity. Cell Immunol 124: 783–801

    CAS  Google Scholar 

  52. Shi Y et al. (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425: 516–521

    Article  CAS  Google Scholar 

  53. Martinon F et al. (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440: 237–241

    Article  CAS  Google Scholar 

  54. Curnock A et al. (2002) Chemokine signalling: pivoting around multiple phosphoinositide 3-kinases. Immunology 105: 125–136

    Article  CAS  Google Scholar 

  55. Okkenhaug K and Vanhaesebroeck B (2003) PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3: 317–330

    Article  CAS  Google Scholar 

  56. Barber D et al. (2005) PI3Kgamma inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nat Med 11: 933–935

    Article  CAS  Google Scholar 

  57. Camps M et al. (2005) Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 11: 936–943

    Article  CAS  Google Scholar 

  58. Hayer S et al. (2006) Challenging the role of PI3K-gamma in arthritis. Arthritis Rheum 54 (Suppl): S599

    Google Scholar 

  59. Rommel C et al. (2007) PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat Rev Immunol 7: 191–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E Sweeney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sweeney, S., Firestein, G. Primer: signal transduction in rheumatic disease—a clinician's guide. Nat Rev Rheumatol 3, 651–660 (2007). https://doi.org/10.1038/ncprheum0631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0631

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing