Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The biology of innate lymphoid cells

Subjects

Abstract

The innate immune system is composed of a diverse array of evolutionarily ancient haematopoietic cell types, including dendritic cells, monocytes, macrophages and granulocytes. These cell populations collaborate with each other, with the adaptive immune system and with non-haematopoietic cells to promote immunity, inflammation and tissue repair. Innate lymphoid cells are the most recently identified constituents of the innate immune system and have been the focus of intense investigation over the past five years. We summarize the studies that formally identified innate lymphoid cells and highlight their emerging roles in controlling tissue homeostasis in the context of infection, chronic inflammation, metabolic disease and cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The innate lymphoid cell family.
Figure 2: Model of developmental pathways of innate lymphoid cells and conventional natural killer cells.
Figure 3: Host-protective effector functions of innate lymphoid cells at barrier surfaces.
Figure 4: Pro-inflammatory and tissue reparative functions of innate lymphoid cells.

Similar content being viewed by others

References

  1. Pulendran, B. & Artis, D. New paradigms in type 2 immunity. Science 337, 431–435 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spits, H. et al. Innate lymphoid cells – a proposal for uniform nomenclature. Nature Rev. Immunol. 13, 145–149 (2013). This is a key review describing the consensus nomenclature for ILC subsets developed by experts in the field.

    Article  CAS  Google Scholar 

  4. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nature Immunol. 12, 21–27 (2011).

    Article  CAS  Google Scholar 

  5. Eberl, G. Development and evolution of RORγt+ cells in a microbe's world. Immunol. Rev. 245, 177–188 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Kiessling, R., Klein, E. & Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Mebius, R. E., Rennert, P. & Weissman, I. L. Developing lymph nodes collect CD4+CD3LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997). This is the first description of a role for ILCs that express lymphotoxin in the establishment of lymphoid structures.

    Article  CAS  PubMed  Google Scholar 

  8. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010). This article and refs 8 and 9 provide three seminal reports identifying murine ILC2s that produce type 2 cytokines and contribute to anti-helminth immunity and type 2 inflammation.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eberl, G. et al. An essential function for the nuclear receptor RORγt in the gen-eration of fetal lymphoid tissue inducer cells. Nature Immunol. 5, 64–73 (2004). This report describes for the first time the critical dependence of LTi cells, which help to direct the formation of secondary lymphoid structures, on the transcription factor RORγt.

    Article  CAS  Google Scholar 

  12. Yagi, R. et al. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 40, 378–388 (2014). This cutting edge report describes all ILCs, not just ILC2s, as being dependent on the transcription factor GATA3 for development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klose, C. S. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014). Both this article and ref. 13 are ground-breaking studies describing committed progenitor cells of ILCs.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nature Immunol. 14, 221–229 (2013).

    Article  CAS  Google Scholar 

  16. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38, 769–781 (2013). This article, along with ref. 15, provides evidence of non-NK cell ILC1s in humans and mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33, 736–751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mjösberg, J. M. et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nature Immunol. 12, 1055–1062 (2011). This is one of the first reports of ILC2s in humans, implicating their pathological role in allergic inflammation.

    Article  CAS  Google Scholar 

  19. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunol. 12, 1045–1054 (2011). This report provides the first description of a tissue-protective role for ILC2s, describing how ILC2s produce amphiregulin, a ligand of EGFR, and contribute to lung-tissue repair following influenza A virus infection in mice.

    Article  CAS  Google Scholar 

  20. Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nature Immunol. 12, 1071–1077 (2011).

    Article  CAS  Google Scholar 

  21. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009). This is one of the first descriptions of IL-22-producing ILC3s in humans and mice, implicating their role in anti-pathogen immunity.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+CD127+ natural killer-like cells. Nature Immunol. 10, 66–74 (2009).

    Article  CAS  Google Scholar 

  23. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Sonnenberg, G. F., Monticelli, L. A., Elloso, M. M., Fouser, L. A. & Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34, 122–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010). This paper was the first report of a role for ILC3-like cells in promoting intestinal inflammation.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ichii, M. et al. Functional diversity of stem and progenitor cells with B-lymphopoietic potential. Immunol. Rev. 237, 10–21 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, Q., Jeremiah Bell, J. & Bhandoola, A. T-cell lineage determination. Immunol. Rev. 238, 12–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cherrier, M., Sawa, S. & Eberl, G. Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J. Exp. Med. 209, 729–740 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Possot, C. et al. Notch signaling is necessary for adult, but not fetal, development of RORγt+ innate lymphoid cells. Nature Immunol. 12, 949–958 (2011).

    Article  CAS  Google Scholar 

  30. Kovalovsky, D. et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nature Immunol. 9, 1055–1064 (2008).

    Article  CAS  Google Scholar 

  31. Savage, A. K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Halim, T. Y. et al. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37, 463–474 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Hoyler, T. et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37, 634–648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van de Pavert, S. A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aliahmad, P., de la Torre, B. & Kaye, J. Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nature Immunol. 11, 945–952 (2010).

    Article  CAS  Google Scholar 

  36. Geiger, T. L. et al. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211, 1723–1731 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seillet, C. et al. Nfil3 is required for the development of all innate lymphoid cell subsets. J. Exp. Med. 211, 1733–1740 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu, X. et al. The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 3, e04406 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  39. Aliahmad, P. & Kaye, J. Development of all CD4 T lineages requires nuclear factor TOX. J. Exp. Med. 205, 245–256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Boos, M. D., Yokota, Y., Eberl, G. & Kee, B. L. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med. 204, 1119–1130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, Q. et al. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38, 694–704 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Serafini, N. et al. Gata3 drives development of RORγt+ group 3 innate lymphoid cells. J. Exp. Med. 211, 199–208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Malhotra, N. et al. A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity 38, 681–693 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Klein Wolterink, R. G. et al. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells. Proc. Natl Acad. Sci. USA 110, 10240–10245 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Mjösberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).

    Article  PubMed  CAS  Google Scholar 

  47. Spooner, C. J. et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nature Immunol. 14, 1229–1236 (2013).

    Article  CAS  Google Scholar 

  48. Ting, C. N., Olson, M. C., Barton, K. P. & Leiden, J. M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384, 474–478 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Gordon, S. M. et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36, 55–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Klose, C. S. et al. A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature 494, 261–265 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Rankin, L. C. et al. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nature Immunol. 14, 389–395 (2013).

    Article  CAS  Google Scholar 

  53. Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nature Immunol. 13, 144–151 (2012).

    Article  CAS  Google Scholar 

  57. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Wong, S. H. et al. Transcription factor RORα is critical for nuocyte development. Nature Immunol. 13, 229–236 (2012).

    Article  CAS  Google Scholar 

  59. Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1β reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA 107, 10961–10966 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mirchandani, A. S. et al. Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. J. Immunol. 192, 2442–2448 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Oliphant, C. J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295 (2014). This paper is a cutting-edge description of how ILC2s and T cells interact to promote type 2 inflammation that drives helminth expulsion from the gut.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, B. S. et al. Basophils promote innate lymphoid cell responses in inflamed skin. J. Immunol. 193, 3717–3725 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Motomura, Y. et al. Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation. Immunity 40, 758–771 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Imai, Y. et al. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc. Natl Acad. Sci. USA 110, 13921–13926 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saenz, S. A. et al. IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells. J. Exp. Med. 210, 1823–1837 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Salimi, M. et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210, 2939–2950 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, B. S. et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci. Transl. Med. 5, 170ra116 (2013).

    Article  CAS  Google Scholar 

  69. Turner, J. E. et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J. Exp. Med. 210, 2951–2965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Meylan, F. et al. The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells. Mucosal Immunol. 7, 958–968 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Yu, X. et al. TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers. Mucosal Immunol. 7, 730–740 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nature Immunol. 12, 383–390 (2011).

    Article  CAS  Google Scholar 

  75. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med. 14, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gladiator, A., Wangler, N., Trautwein-Weidner, K. & LeibundGut-Landmann, S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol. 190, 521–525 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Van Maele, L. et al. Activation of type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during Streptococcus pneumoniae infection. J. Infect. Dis. 210, 493–503 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Pitt, J. M. et al. Blockade of IL-10 signaling during bacillus Calmette-Guerin vaccination enhances and sustains Th1, Th17, and innate lymphoid IFN-gamma and IL-17 responses and increases protection to Mycobacterium tuberculosis infection. J. Immunol. 189, 4079–4087 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Kang, Z. et al. Epithelial cell-specific Act1 adaptor mediates interleukin-25-dependent helminth expulsion through expansion of Linc-Kit+ innate cell population. Immunity 36, 821–833 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liang, H. E. et al. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nature Immunol. 13, 58–66 (2012).

    Article  CAS  Google Scholar 

  82. Zaiss, D. M. et al. Amphiregulin, a TH2 cytokine enhancing resistance to nematodes. Science 314, 1746 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Yasuda, K. et al. Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc. Natl Acad. Sci. USA 109, 3451–3456 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ganal, S. C. et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37, 171–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330, 665–669 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012). This report identifies a crucial role for ILC3s in regulating host–microbiota interactions.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kruglov, A. A. et al. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science 342, 1243–1246 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Hepworth, M. R. et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013). This paper provides the first evidence that ILC3s directly regulate adaptive immune responses.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. von Burg, N. et al. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proc. Natl Acad. Sci. USA 111, 12835–12840 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Korn, L. L. et al. Conventional CD4+ T cells regulate IL-22-producing intestinal innate lymphoid cells. Mucosal Immunol. 7, 1045–1057 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Magri, G. et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nature Immunol. 15, 354–364 (2014).

    Article  CAS  Google Scholar 

  93. van de Pavert, S. A. et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nature Immunol. 10, 1193–1199 (2009).

    Article  CAS  Google Scholar 

  94. Scandella, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nature Immunol. 9, 667–675 (2008).

    Article  CAS  Google Scholar 

  95. Sawa, S. et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nature Immunol. 12, 320–326 (2011).

    Article  ADS  CAS  Google Scholar 

  96. Dudakov, J. A. et al. Interleukin-22 drives endogenous thymic regeneration in mice. Science 336, 91–95 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Taube, C. et al. IL-22 is produced by innate lymphoid cells and limits inflammation in allergic airway disease. PLoS ONE 6, e21799 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Powell, N. et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 37, 674–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chang, Y. J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nature Immunol. 12, 631–638 (2011).

    Article  CAS  Google Scholar 

  100. Barnig, C. et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci. Transl. Med. 5, 174ra126 (2013). This is one of the only reports to describe a factor or pathway that limits ILC2 function.

    Article  CAS  Google Scholar 

  101. Doherty, T. A. et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J. Allergy Clin. Immunol. 132, 205–213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Drake, L. Y., Iijima, K. & Kita, H. Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy 69, 1300–1307 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Halim, T. Y. et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bartemes, K. R., Kephart, G. M., Fox, S. J. & Kita, H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J. Allergy Clin. Immunol. 134, 671–678 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Roediger, B. et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nature Immunol. 14, 564–573 (2013).

    Article  CAS  Google Scholar 

  107. Villanova, F. et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J. Invest. Dermatol. 134, 984–991 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Pantelyushin, S. et al. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest. 122, 2252–2256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hambly, N. & Nair, P. Monoclonal antibodies for the treatment of refractory asthma. Curr. Opin. Pulm. Med. 20, 87–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Perry, J. S. et al. Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci. Transl. Med. 4, 145ra106 (2012). This paper identifies that targeting pathways that regulate ILCs, such as IL-2 signalling, can be efficacious in treating diseases associated with aberrant ILC responses.

    Article  PubMed  CAS  Google Scholar 

  111. Mair, F. & Becher, B. Thy1+ Sca1+ innate lymphoid cells infiltrate the CNS during autoimmune inflammation, but do not contribute to disease development. Eur. J. Immunol. 44, 37–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Xue, L. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184–1194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Solt, L. A. et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 472, 491–494 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  114. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hams, E., Locksley, R. M., McKenzie, A. N. & Fallon, P. G. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J. Immunol. 191, 5349–5353 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Miller, A. M. et al. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ. Res. 107, 650–658 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013). This report establishes a connection between eosinophil homeostasis and ILC2 activity in the context of the regulation of food intake and metabolic homeostasis that is controlled by circadian rhythms in the intestine.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  118. Spencer, S. P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432–437 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vivier, E., Ugolini, S., Blaise, D., Chabannon, C. & Brossay, L. Targeting natural killer cells and natural killer T cells in cancer. Nature Rev. Immunol. 12, 239–252 (2012).

    Article  CAS  Google Scholar 

  120. Shields, J. D., Kourtis, I. C., Tomei, A. A., Roberts, J. M. & Swartz, M. A. Induction of lymphoid-like stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  121. Langowski, J. L. et al. IL-23 promotes tumour incidence and growth. Nature 442, 461–465 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  122. Chan, I. H. et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 7, 842–856 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Huber, S. et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491, 259–263 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kirchberger, S. et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210, 917–931 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Eisenring, M., vom Berg, J., Kristiansen, G., Saller, E. & Becher, B. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nature Immunol. 11, 1030–1038 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Osborne, K. Germar, M. R. Hepworth, E. Tait Wojno and G. F. Sonnenberg for discussions and critical reading of the manuscript. We apologize to colleagues whose work could not be directly quoted due to space constraints. Research in the Artis laboratory is supported by the US National Institutes of Health (AI061570, AI095608, AI074878, AI095466, AI106697, AI102942, AI097333), the Crohns and Colitis Foundation of America and the Burroughs Wellcome Fund. Research in the Spits lab is supported by an advanced grant (341038) of the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Artis or Hergen Spits.

Ethics declarations

Competing interests

David Artis is a scientific advisor for Bio-Techne and Second Genome although neither of their programmes are referred to. Hergen Spits is a part time employee of AIMM therapeutics although no AIMM programmes are referred to.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artis, D., Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015). https://doi.org/10.1038/nature14189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14189

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing