Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic variation in cholinergic muscarinic-2 receptor gene modulates M2 receptor binding in vivo and accounts for reduced binding in bipolar disorder

Abstract

Genetic variation in the cholinergic muscarinic-2 (M2) receptor gene (CHRM2) has been associated with the risk for developing depression. We previously reported that M2-receptor distribution volume (VT) was reduced in depressed subjects with bipolar disorder (BD) relative to depressed subjects with major depressive disorder (MDD) and healthy controls (HCs). In this study, we investigated the effects of six single-nucleotide polymorphisms (SNPs) for CHRM2 on M2-receptor binding to test the hypotheses that genetic variation in CHRM2 influences M2-receptor binding and that a CHRM2 polymorphism underlies the deficits in M2-receptor VT observed in BD. The M2-receptor VT was measured using positron emission tomography and [18F]FP-TZTP in unmedicated, depressed subjects with BD (n=16) or MDD (n=24) and HCs (n=25), and the effect of genotype on VT was assessed. In the controls, one SNP (with identifier rs324650, in which the ancestral allele adenine (A) is replaced with one or two copies of thymine (T), showed a significant allelic effect on VT in the pregenual and subgenual anterior cingulate cortices in the direction AA<AT<TT. In contrast, in BD subjects with the TT genotype, VT was significantly lower than in BD subjects with the AT genotype in these regions. The BD subjects homozygous for the T –allele also showed markedly lower VT (by 27 to 37% across regions) than HCs of the same genotype. Post hoc analyses suggested that T homozygosity was associated with a more severe illness course, as manifested by lower socioeconomic function, poorer spatial recognition memory and a greater likelihood of having attempted suicide. These data represent novel preliminary evidence that reduced M2-receptor VT in BD is associated with genetic variation within CHRM2. The differential impact of the M2-receptor polymorphism at rs324650 in the BD and HC samples suggests interactive effects with an unidentified vulnerability factor for BD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cannon DM, Carson RE, Nugent AC, Eckelman WC, Kiesewetter DO, Williams J et al. Reduced muscarinic type 2 receptor binding in subjects with bipolar disorder. Arch Gen Psychiatry 2006; 63: 741–747.

    Article  CAS  PubMed  Google Scholar 

  2. Jagoda EM, Kiesewetter DO, Shimoji K, Ravasi L, Yamada M, Gomeza J et al. Regional brain uptake of the muscarinic ligand, [18F]FP-TZTP, is greatly decreased in M2 receptor knockout mice but not in M1, M3 and M4 receptor knockout mice. Neuropharmacology 2003; 44: 653–661.

    Article  CAS  PubMed  Google Scholar 

  3. Carson RE, Kiesewetter DO, Jagoda E, Der MG, Herscovitch P, Eckelman WC . Muscarinic cholinergic receptor measurements with [18F]FP-TZTP: control and competition studies. J Cereb Blood Flow Metab 1998; 18: 1130–1142.

    Article  CAS  PubMed  Google Scholar 

  4. Wang JC, Hinrichs AL, Stock H, Budde J, Allen R, Bertelsen S et al. Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome. Hum Mol Genet 2004; 13: 1903–1911.

    Article  CAS  PubMed  Google Scholar 

  5. Comings DE, Wu S, Rostamkhani M, McGue M, Iacono WG, MacMurray JP . Association of the muscarinic cholinergic 2 receptor (CHRM2) gene with major depression in women. Am J Med Genet 2002; 114: 527–529.

    Article  PubMed  Google Scholar 

  6. Luo X, Kranzler HR, Zuo L, Wang S, Blumberg HP, Gelernter J . CHRM2 gene predisposes to alcohol dependence, drug dependence and affective disorders: results from an extended case-control structured association study. Hum Mol Genet 2005; 14: 2421–2434.

    Article  CAS  PubMed  Google Scholar 

  7. Cohen-Woods S, Gaysina D, Craddock N, Farmer A, Gray J, Gunasinghe C et al. Depression Case Control (DeCC) Study fails to support involvement of the muscarinic acetylcholine receptor M2 (CHRM2) gene in recurrent major depressive disorder. Hum Mol Genet 2009; 18: 1504–1509.

    Article  CAS  PubMed  Google Scholar 

  8. Saffen D, Mieda M, Okamura M, Haga T . Control elements of muscarinic receptor gene expression. Life Sci 1999; 64: 479–486.

    Article  CAS  PubMed  Google Scholar 

  9. Detera-Wadleigh SD, Badner JA, Yoshikawa T, Sanders AR, Goldin LR, Turner G et al. Initial genome scan of the NIMH genetics initiative bipolar pedigrees: chromosomes 4, 7, 9, 18, 19, 20, and 21q. Am J Med Genet 1997; 74: 254–262.

    Article  CAS  PubMed  Google Scholar 

  10. Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G et al. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc Natl Acad Sci USA 1999; 96: 5604–5609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu J, Juo SH, Dewan A, Grunn A, Tong X, Brito M et al. Evidence for a putative bipolar disorder locus on 2p13-16 and other potential loci on 4q31, 7q34, 8q13, 9q31, 10q21-24, 13q32, 14q21 and 17q11-12. Mol Psychiatry 2003; 8: 333–342.

    Article  CAS  PubMed  Google Scholar 

  12. Dick DM, Aliev F, Wang JC, Grucza RA, Schuckit M, Kuperman S et al. Using dimensional models of externalizing psychopathology to aid in gene identification. Arch Gen Psychiatry 2008; 65: 310–318.

    Article  PubMed  Google Scholar 

  13. Drevets WC, Price JL, Furey ML . Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 2008; 213: 93–118.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gourovitch ML, Torrey EF, Gold JM, Randolph C, Weinberger DR, Goldberg TE . Neuropsychological performance of monozygotic twins discordant for bipolar disorder. Biol Psychiatry 1999; 45: 639–646.

    Article  CAS  PubMed  Google Scholar 

  15. Keri S, Kelemen O, Benedek G, Janka Z . Different trait markers for schizophrenia and bipolar disorder: a neurocognitive approach. Psychol Med 2001; 31: 915–922.

    Article  CAS  PubMed  Google Scholar 

  16. MacQueen GM, Galway TM, Hay J, Young LT, Joffe RT . Recollection memory deficits in patients with major depressive disorder predicted by past depressions but not current mood state or treatment status. Psychol Med 2002; 32: 251–258.

    Article  CAS  PubMed  Google Scholar 

  17. Jones KA, Porjesz B, Almasy L, Bierut L, Dick D, Goate A et al. A cholinergic receptor gene (CHRM2) affects event-related oscillations. Behav Genet 2006; 36: 627–639.

    Article  PubMed  Google Scholar 

  18. Jones KA, Porjesz B, Almasy L, Bierut L, Goate A, Wang JC et al. Linkage and linkage disequilibrium of evoked EEG oscillations with CHRM2 receptor gene polymorphisms: implications for human brain dynamics and cognition. Int J Psychophysiol 2004; 53: 75–90.

    Article  PubMed  Google Scholar 

  19. Rangaswamy M, Porjesz B . Uncovering genes for cognitive (dys)function and predisposition for alcoholism spectrum disorders: a review of human brain oscillations as effective endophenotypes. Brain Res 2008; 1235: 153–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Basar E, Basar-Eroglu C, Karakas S, Schurmann M . Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG? Neurosci Lett 1999; 259: 165–168.

    Article  CAS  PubMed  Google Scholar 

  21. Schurmann M, Basar-Eroglu C, Kolev V, Basar E . Delta responses and cognitive processing: single-trial evaluations of human visual P300. Int J Psychophysiol 2001; 39: 229–239.

    Article  CAS  PubMed  Google Scholar 

  22. Mitrofanis J, Guillery RW . New views of the thalamic reticular nucleus in the adult and the developing brain. Trends Neurosci 1993; 16: 240–245.

    Article  CAS  PubMed  Google Scholar 

  23. Basar E, Basar-Eroglu C, Karakas S, Schurmann M . Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 2001; 39: 241–248.

    Article  CAS  PubMed  Google Scholar 

  24. Doppelmayr M, Klimesch W, Schwaiger J, Auinger P, Winkler T . Theta synchronization in the human EEG and episodic retrieval. Neurosci Lett 1998; 257: 41–44.

    Article  CAS  PubMed  Google Scholar 

  25. Gevins A, Smith ME, Leong H, McEvoy L, Whitfield S, Du R et al. Monitoring working memory load during computer-based tasks with EEG pattern recognition methods. Human Factors 1998; 40: 79–91.

    Article  CAS  PubMed  Google Scholar 

  26. Klimesch W, Doppelmayr M, Yonelinas A, Kroll NE, Lazzara M, Rohm D et al. Theta synchronization during episodic retrieval: neural correlates of conscious awareness. Brain Research 2001; 12: 33–38.

    CAS  PubMed  Google Scholar 

  27. Klimesch W, Schimke H, Schwaiger J . Episodic and semantic memory: an analysis in the EEG theta and alpha band. Electroencephalogr Clin Neurophysiol 1994; 91: 428–441.

    Article  CAS  PubMed  Google Scholar 

  28. Dick DM, Aliev F, Kramer J, Wang JC, Hinrichs A, Bertelsen S et al. Association of CHRM2 with IQ: converging evidence for a gene influencing intelligence. Behav Genet 2007; 37: 265–272.

    Article  PubMed  Google Scholar 

  29. Gosso FM, de Geus EJ, Polderman TJ, Boomsma DI, Posthuma D, Heutink P . Exploring the functional role of the CHRM2 gene in human cognition: results from a dense genotyping and brain expression study. BMC Med Genet 2007; 8: 66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gosso MF, van Belzen M, de Geus EJ, Polderman JC, Heutink P, Boomsma DI et al. Association between the CHRM2 gene and intelligence in a sample of 304 Dutch families. Genes Brain Behav 2006; 5: 577–584.

    Article  CAS  PubMed  Google Scholar 

  31. Comings DE, Wu S, Rostamkhani M, McGue M, Lacono WG, Cheng LS et al. Role of the cholinergic muscarinic 2 receptor (CHRM2) gene in cognition. Mol Psychiatry 2003; 8: 10–11.

    Article  CAS  PubMed  Google Scholar 

  32. Posthuma D, Luciano M, Geus EJ, Wright MJ, Slagboom PE, Montgomery GW et al. A genomewide scan for intelligence identifies quantitative trait loci on 2q and 6p. Am J Hum Genet 2005; 77: 318–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Janowsky DS, el-Yousef K, Davis JM, Sekerke HJ . Parasympathetic suppression of manic symptoms by physostigmine. Arch Gen Psychiatry 1973; 28: 542–547.

    Article  CAS  PubMed  Google Scholar 

  34. Janowsky DS, el-Yousef MK, Davis JM . Acetylcholine and depression. Psychosom Med 1974; 36: 248–257.

    Article  CAS  PubMed  Google Scholar 

  35. Janowsky DS, el-Yousef MK, Davis JM, Hubbard B, Sekerke HJ . Cholinergic reversal of manic symptoms. Lancet 1972a; 1: 1236–1237.

    Article  CAS  PubMed  Google Scholar 

  36. Gillin JC, Sitaram N, Duncan WC . Muscarinic supersensitivity: a possible model for the sleep disturbance of primary depression? Psychiatry Res 1979; 1: 17–22.

    Article  CAS  PubMed  Google Scholar 

  37. Gillin JC, Sitaram N, Mendelson WB . Acetylcholine, sleep, and depression. Hum Neurobiol 1982; 1: 211–219.

    CAS  PubMed  Google Scholar 

  38. Risch SC, Janowsky DS, Gillin JC . Muscarinic supersensitivity of anterior pituitary ACTH and B-endorphin release in major depressive illness. Peptides 1983b; 4: 789–792.

    Article  CAS  PubMed  Google Scholar 

  39. Risch SC, Janowsky DS, Gillin JC, Rausch JL, Loevinger BL, Huey LY . Muscarinic supersensitivity of anterior pituitary ACTH release in major depressive illness, adrenal cortical dissociation. Psychopharmacol Bull 1983c; 19: 343–346.

    CAS  PubMed  Google Scholar 

  40. Risch SC, Janowsky DS, Mott MA, Gillin JC, Kalir HH, Huey LY et al. Central and peripheral cholinesterase inhibition: effects on anterior pituitary and sympathomimetic function. Psychoneuroendocrinology 1986; 11: 221–230.

    Article  CAS  PubMed  Google Scholar 

  41. Risch SC, Kalin NH, Janowsky DS . Cholinergic challenges in affective illness: behavioral and neuroendocrine correlates. J Clin Psychopharmacol 1981; 1: 186–192.

    Article  CAS  PubMed  Google Scholar 

  42. Janowsky D, Overstreet D . The role of acetylcholine mechanisms in affective disorders. In: Floyd E Bloom and David J (eds). Psychopharmacology, The Fourth Generation of Progress. Kupfer Lippincott Williams and Wilkins, Raven Press: Nashville, TN, USA, 2000.

    Google Scholar 

  43. Janowsky DS, el-Yousef MK, Davis JM, Sekerke HJ . A cholinergic-adrenergic hypothesis of mania and depression. Lancet 1972b; 2: 632–635.

    Article  CAS  PubMed  Google Scholar 

  44. Risch SC, Cohen RM, Janowsky DS, Kalin NH, Sitaram N, Gillin JC et al. Physostigmine induction of depressive symptomatology in normal human subjects. Psychiatry Res 1981a; 4: 89–94.

    Article  CAS  PubMed  Google Scholar 

  45. Riemann D, Hohagen F, Bahro M, Lis S, Stadmuller G, Gann H et al. Cholinergic neurotransmission, REM sleep and depression. J Psychosom Res 1994; 38 (Suppl 1): 15–25.

    Article  PubMed  Google Scholar 

  46. Dilsaver SC . Pathophysiology of ‘cholinoceptor supersensitivity’ in affective disorders. Biol Psychiatry 1986; 21: 813–829.

    Article  CAS  PubMed  Google Scholar 

  47. McGaugh JL . The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 2004; 27: 1–28.

    Article  CAS  PubMed  Google Scholar 

  48. Phillips ML, Drevets WC, Rauch SL, Lane R . Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry 2003; 54: 515–528.

    Article  PubMed  Google Scholar 

  49. Ketter TA, Andreason PJ, George MS, Lee C, Gill DS, Parekh PI et al. Anterior paralimbic mediation of procaine-induced emotional and psychosensory experiences. Arch Gen Psychiatry 1996; 53: 59–69.

    Article  CAS  PubMed  Google Scholar 

  50. Benson BE, Carson RE, Kiesewetter DO, Herscovitch P, Eckelman WC, Post RM et al. A potential cholinergic mechanism of procaine's limbic activation. Neuropsychopharmacology 2004; 29: 1239–1250.

    Article  CAS  PubMed  Google Scholar 

  51. Langer SZ . 25 years since the discovery of presynaptic receptors: present knowledge and future perspectives. Trends Pharmacol Sci 1997; 18: 95–99.

    Article  CAS  PubMed  Google Scholar 

  52. Cannon DM, Ichise M, Rollis D, Klaver JM, Gandhi SK, Charney DS et al. Elevated serotonin transporter binding in major depressive disorder assessed using positron emission tomography and [11C]DASB; comparison with bipolar disorder. Biol Psychiatry 2007; 62: 870–877.

    Article  CAS  PubMed  Google Scholar 

  53. Burk JA, Sarter M . Dissociation between the attentional functions mediated via basal forebrain cholinergic and GABAergic neurons. Neuroscience 2001; 105: 899–909.

    Article  CAS  PubMed  Google Scholar 

  54. McGaughy J, Everitt BJ, Robbins TW, Sarter M . The role of cortical cholinergic afferent projections in cognition: impact of new selective immunotoxins. Behav Brain Res 2000; 115: 251–263.

    Article  CAS  PubMed  Google Scholar 

  55. Sarter M, Bruno JP . Abnormal regulation of corticopetal cholinergic neurons and impaired information processing in neuropsychiatric disorders. Trends Neurosci 1999; 22: 67–74.

    Article  CAS  PubMed  Google Scholar 

  56. Montgomery S, Asberg M . A new depression scale designed to be sensitive to change. Brit J Psychiat 1979; 134: 382–389.

    Article  CAS  PubMed  Google Scholar 

  57. Hamilton M . The assessment of anxiety states by rating. Brit J Med Psychol 1959; 32: 50–55.

    Article  CAS  PubMed  Google Scholar 

  58. Young RC, Biggs JT, Ziegler VE, Meyer DA . A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry 1978; 133: 429–435.

    Article  CAS  PubMed  Google Scholar 

  59. Hollingshead A . Four Factor Index of Social Status. Department of Sociology, Yale University: New Haven (Connecticut), 1975.

    Google Scholar 

  60. NIMH Genetics Initiative. Family interview for genetic studies. http://nimhgenetics.org/.

  61. McMahon FJ, Buervenich S, Charney D, Lipsky R, Rush AJ, Wilson AF et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet 2006; 78: 804–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gunderson KL, Kruglyak S, Graige MS, Garcia F, Kermani BG, Zhao C et al. Decoding randomly ordered DNA arrays. Genome Res 2004; 14: 870–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P . Association mapping in structured populations. Am J Hum Genet 2000; 67: 170–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kiesewetter DO, Vuong BK, Channing MA . The automated radiosynthesis of [18F]FP-TZTP. Nucl Med Biol 2003; 30: 73–77.

    Article  CAS  PubMed  Google Scholar 

  65. Ma Y, Kiesewetter DO, Jagoda EM, Huang BX, Eckelman WC . Identification of metabolites of fluorine-18-labeled M2 muscarinic receptor agonist, 3-(3-[(3-fluoropropyl)thio]-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-me thylpyridine, produced by human and rat hepatocytes. J Chromatogr B Biomed Sci Appl 2002; 766: 319–329.

    CAS  Google Scholar 

  66. Genovese CR, Lazar NA, Nichols T . Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002; 15: 870–878.

    Article  PubMed  Google Scholar 

  67. Laje G, Cannon D, Drevets W, McMahon FIP . Genetic variation in HTR2A influences serotonin transporter binding potential as measured using PET and [11C]DASB. International Journal of Neuropsychopharmacology 2009; 1–10; e-pub ahead of print (PMID 20047709).

  68. Yan Z, Surmeier DJ . Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited, G-protein pathway. J Neurosci 1996; 16: 2592–2604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G . Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses. Eur J Neurosci 1998; 10: 3020–3023.

    Article  CAS  PubMed  Google Scholar 

  70. Gibbons AS, Scarr E, McLean C, Sundram S, Dean B . Decreased muscarinic receptor binding in the frontal cortex of bipolar disorder and major depressive disorder subjects. J Affect Disord 2009; 116: 184–191.

    Article  CAS  PubMed  Google Scholar 

  71. Zavitsanou K, Katsifis A, Yu Y, Huang XF . M2/M4 muscarinic receptor binding in the anterior cingulate cortex in schizophrenia and mood disorders. Brain Res Bull 2005; 65: 397–403.

    Article  CAS  PubMed  Google Scholar 

  72. Ross E . Pharmacodynamics. In: Hardman JG, Limbird LE, Gilman AG, (eds). Goodman and Gilman's The Pharmacological Basis of Therapeutics. 9th edn. McGraw-Hill Professional: New York, NY, 1996.

    Google Scholar 

  73. Bonner TI, Buckley NJ, Young AC, Brann MR . Identification of a family of muscarinic acetylcholine receptor genes. Science 1987; 237: 527–532.

    Article  CAS  PubMed  Google Scholar 

  74. Peralta EG, Winslow JW, Peterson GL, Smith DH, Ashkenazi A, Ramachandran J et al. Primary structure and biochemical properties of an M2 muscarinic receptor. Science 1987; 236: 600–605.

    Article  CAS  PubMed  Google Scholar 

  75. Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 2006; 441: 87–90.

    Article  CAS  PubMed  Google Scholar 

  76. Han JS, Boeke JD . LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? Bioessays 2005; 27: 775–784.

    Article  CAS  PubMed  Google Scholar 

  77. Hellmann-Blumberg U, Hintz MF, Gatewood JM, Schmid CW . Developmental differences in methylation of human Alu repeats. Mol Cell Biol 1993; 13: 4523–4530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Muratani K, Hada T, Yamamoto Y, Kaneko T, Shigeto Y, Ohue T et al. Inactivation of the cholinesterase gene by Alu insertion: possible mechanism for human gene transposition. Proc Natl Acad Sci USA 1991; 88: 11315–11319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McClintock B . The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 1950; 36: 344–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Krejci A, Bruce AW, Dolezal V, Tucek S, Buckley NJ . Multiple promoters drive tissue-specific expression of the human M muscarinic acetylcholine receptor gene. J Neurochem 2004; 91: 88–98.

    Article  CAS  PubMed  Google Scholar 

  81. Heinzen EL, Ge D, Cronin KD, Maia JM, Shianna KV, Gabriel WN et al. Tissue-specific genetic control of splicing: implications for the study of complex traits. PLoS Biol 2008; 6: e1.

    Article  PubMed  CAS  Google Scholar 

  82. Luo X, Kranzler HR, Zuo L, Zhang H, Wang S, Gelernter J . CHRM2 variation predisposes to personality traits of agreeableness and conscientiousness. Hum Mol Genet 2007; 16: 1557–1568.

    Article  CAS  PubMed  Google Scholar 

  83. Allen MH, Chessick CA, Miklowitz DJ, Goldberg JF, Wisniewski SR, Miyahara S et al. Contributors to suicidal ideation among bipolar patients with and without a history of suicide attempts. Suicide Life Threat Behav 2005; 35: 671–680.

    Article  PubMed  Google Scholar 

  84. Taylor Tavares JV, Clark L, Cannon DM, Erickson K, Drevets WC, Sahakian BJ . Distinct profiles of neurocognitive function in unmedicated unipolar depression and bipolar II depression. Biol Psychiatry 2007; 62: 917–924.

    Article  PubMed  Google Scholar 

  85. Tavares JV, Drevets WC, Sahakian BJ . Cognition in mania and depression. Psychol Med 2003; 33: 959–967.

    Google Scholar 

  86. Roiser JP, Cannon DM, Gandhi SK, Taylor Tavares J, Erickson K, Wood S et al. Hot and cold cognition in unmedicated depressed subjects with bipolar disorder. Bipolar Disord 2009; 11: 178–189.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Holmes M, Erickson K, Luckenbaugh D, Drevets W, Bain E, Cannon D et al. A comparison of cognitive functioning in medicated and unmedicated subjects with bipolar depression. Bipolar Disorder 2008; 10: 806–815.

    Article  Google Scholar 

  88. Elliott R, Sahakian B, Charney D . State of Science Review: E7. The Neural Basis of Resilience. Foresight Mental Capital and Wellbeing Project, 2008; http://www.foresight.gov.uk/; Government Office for Science, UK.

    Google Scholar 

  89. Barnett JH, Salmond CH, Jones PB, Sahakian BJ . Cognitive reserve in neuropsychiatry. Psychol Med 2006; 36: 1053–1064.

    Article  CAS  PubMed  Google Scholar 

  90. Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 2009; e-pub ahead of print July 27, 2009.

  91. Schosser A, Cohen-Woods S, Gaysina D, Chow PC, Martucci L, Farmer A et al. NRG1 gene in recurrent major depression: no association in a large-scale case-control association study. Am J Med Genet B Neuropsychiatr Genet 2009; 153B: 141–147.

    Google Scholar 

  92. Giovannini MG . The role of the extracellular signal-regulated kinase pathway in memory encoding. Rev Neurosci 2006; 17: 619–634.

    Article  CAS  PubMed  Google Scholar 

  93. Power AE, Roozendaal B, McGaugh JL . Glucocorticoid enhancement of memory consolidation in the rat is blocked by muscarinic receptor antagonism in the basolateral amygdala. Eur J Neurosci 2000; 12: 3481–3487.

    Article  CAS  PubMed  Google Scholar 

  94. Clark L, Chamberlain SR, Sahakian BJ . Neurocognitive mechanisms in depression: implications for treatment. Annu Rev Neurosci 2009; 32: 57–74.

    Article  CAS  PubMed  Google Scholar 

  95. Erickson K, Drevets WC, Clark L, Cannon DM, Bain EE, Zarate Jr CA et al. Mood-congruent bias in affective go/no-go performance of unmedicated patients with major depressive disorder. Am J Psychiatry 2005; 162: 2171–2173.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Peter Herscovitch, MD, and the Clinical Center PET Department for providing the radioligand and for technical assistance; Michele Drevets, RN, and Joan Williams, RN, for evaluation and recruitment of the research subjects; the staff of the NIH Clinical Center, Allison Nugent, Stephen Fromm, Kelly Anastasi and Laurentina Cizza for assistance in data management; and Dave Luckenbaugh, PhD, for advice regarding the statistical analysis of the PET data. This study was supported by the intramural research program of the NIH/NIMH and a National Alliance for Research on Schizophrenia and Depression Young Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D M Cannon.

Ethics declarations

Competing interests

The authors declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannon, D., Klaver, J., Gandhi, S. et al. Genetic variation in cholinergic muscarinic-2 receptor gene modulates M2 receptor binding in vivo and accounts for reduced binding in bipolar disorder. Mol Psychiatry 16, 407–418 (2011). https://doi.org/10.1038/mp.2010.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.24

Keywords

This article is cited by

Search

Quick links