Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Characterization of BMS-911543, a functionally selective small-molecule inhibitor of JAK2

Abstract

We report the characterization of BMS-911543, a potent and selective small-molecule inhibitor of the Janus kinase (JAK) family member, JAK2. Functionally, BMS-911543 displayed potent anti-proliferative and pharmacodynamic (PD) effects in cell lines dependent upon JAK2 signaling, and had little activity in cell types dependent upon other pathways, such as JAK1 and JAK3. BMS-911543 also displayed anti-proliferative responses in colony growth assays using primary progenitor cells isolated from patients with JAK2V617F-positive myeloproliferative neoplasms (MPNs). Similar to these in vitro observations, BMS-911543 was also highly active in in vivo models of JAK2 signaling, with sustained pathway suppression being observed after a single oral dose. At low dose levels active in JAK2-dependent PD models, no effects were observed in an in vivo model of immunosuppression monitoring antigen-induced IgG and IgM production. Expression profiling of JAK2V617F-expressing cells treated with diverse JAK2 inhibitors revealed a shared set of transcriptional changes underlying pharmacological effects of JAK2 inhibition, including many STAT1-regulated genes and STAT1 itself. Collectively, our results highlight BMS-911543 as a functionally selective JAK2 inhibitor and support the therapeutic rationale for its further characterization in patients with MPN or in other disorders characterized by constitutively active JAK2 signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Murray PJ . The JAK-STAT signaling pathway: input and output integration. J Immuno 2007; 178: 2623–2629.

    Article  CAS  Google Scholar 

  2. Li WX . Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol 2008; 18: 545–551.

    Article  CAS  Google Scholar 

  3. Yu H, Pardoll D, Jove R . STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9: 798–809.

    Article  CAS  Google Scholar 

  4. Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 1995; 270: 797–800.

    Article  CAS  Google Scholar 

  5. Macchi P, Villa A, Giliani S, Sacco MG, Frattini A, Porta F et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995; 377: 65–68.

    Article  CAS  Google Scholar 

  6. Müller M, Briscoe J, Laxton C, Guschin D, Ziemiecki A, Silvennoinen O et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and —gamma signal transduction. Nature 1993; 366: 129–135.

    Article  Google Scholar 

  7. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 2006; 25: 745–755.

    Article  CAS  Google Scholar 

  8. Neubauer H, Cumano A, Müller M, Wu H, Huffstadt U, Pfeffer K . Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998; 93: 397–409.

    Article  CAS  Google Scholar 

  9. Levine RL, Pardanani A, Tefferi A, Gilliland DG . Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer 2007; 7: 673–683.

    Article  CAS  Google Scholar 

  10. Morgan KJ, Gilliland DG . A role for JAK2 mutations in myeloproliferative diseases. Annu Rev Med 2008; 59: 213–222.

    Article  CAS  Google Scholar 

  11. Tefferi A . Essential thrombocythemia, polycythemia vera, and myelofibrosis: current management and the prospect of targeted therapy. Am J Hematol 2008; 83: 491–497.

    Article  CAS  Google Scholar 

  12. Tefferi A . Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010; 24: 1128–1138.

    Article  CAS  Google Scholar 

  13. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  Google Scholar 

  14. Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005; 106: 2162–2168.

    Article  CAS  Google Scholar 

  15. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468.

    Article  CAS  Google Scholar 

  16. Pardanani A, Lasho TL, Finke C, Hanson CA, Tefferi A . Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia 2007; 21: 1960–1963.

    Article  CAS  Google Scholar 

  17. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: 1141–1151.

    Article  Google Scholar 

  18. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    Article  CAS  Google Scholar 

  19. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG . Expression of JAK2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006; 107: 4274–4281.

    Article  CAS  Google Scholar 

  20. Tyner JW, Bumm TG, Deininger J, Wood L, Aichberger KJ, Loriaux MM et al. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood 2010; 115: 5232–5240.

    Article  CAS  Google Scholar 

  21. Kumar C, Purandare AV, Lee FY, Lorenzi MV . Kinase drug discovery approaches in chronic myeloproliferative disorders. Oncogene 2009; 28: 2305–2513.

    Article  CAS  Google Scholar 

  22. Pardanani A, Vannucchi AM, Passamonti F, Cervantes F, Barbui T, Tefferi A . JAK inhibitor therapy for myelofibrosis: critical assessment of value and limitations. Leukemia 2011; 25: 218–225.

    Article  CAS  Google Scholar 

  23. Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol 2011; 186: 4234–4243.

    Article  CAS  Google Scholar 

  24. Carboni JM, Wittman M, Yang Z, Lee F, Greer A, Hurlburt W et al. BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol Cancer Ther 2009; 8: 3341–3349.

    Article  CAS  Google Scholar 

  25. Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 2005; 23: 329–336.

    Article  CAS  Google Scholar 

  26. Pardanani A, Hood J, Lasho T, Levine RL, Martin MB, Noronha G et al. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 2007; 21: 1658–1668.

    Article  CAS  Google Scholar 

  27. Ji RR, de Silva H, Jin Y, Bruccoleri RE, Cao J, He A et al. Transcriptional profiling of the dose response: a more powerful approach for characterizing drug activities. PLoS Comput Biol 2009; 5: 1–12.

    Article  Google Scholar 

  28. Melzner I, Weniger MA, Bucur AJ, Brüderlein S, Dorsch K, Hasel C et al. Biallelic deletion within 16p13.13 including SOCS-1 in Karpas1106P mediastinal B-cell lymphoma line is associated with delayed degradation of JAK2 protein. Int J Cancer 2006; 118: 1941–1944.

    Article  CAS  Google Scholar 

  29. Chen E, Beer PA, Godfrey AL, Ortmann CA, Li J, Costa-Pereira AP et al. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1signaling. Cancer Cell 2010; 18: 524–535.

    Article  CAS  Google Scholar 

  30. Russell RC, Sufan RI, Zhou B, Heir P, Bunda S, Sybingco SS et al. Loss of JAK2 regulation via a heterodimeric VHL-SOCS1 E3 ubiquitin ligase underlies Chuvash polycythemia. Nat Med 2011; 17: 845–853.

    Article  CAS  Google Scholar 

  31. Wernig G, Kharas MG, Okabe R, Moore SA, Leeman DS, Cullen DE et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 2008; 13: 311–320.

    Article  CAS  Google Scholar 

  32. Mizoguchi C, Uehara S, Akira S, Takatsu K . IL-5 induces IgG1 isotype switch recombination in mouse CD38-activated sIgD-positive B lymphocytes. J Immunol 1999; 162: 2812–2819.

    CAS  Google Scholar 

  33. Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA 2005; 102: 18962–188967.

    Article  CAS  Google Scholar 

  34. Geron I, Abrahamsson AE, Barroga CF, Kavalerchik E, Gotlib J, Hood JD et al. Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell 2008; 13: 321–330.

    Article  CAS  Google Scholar 

  35. Buettner R, Mora LB, Jove R . Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002; 8: 945–954.

    CAS  Google Scholar 

  36. Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 2009; 16: 487–497.

    Article  CAS  Google Scholar 

  37. Burger R, Le Gouill S, Tai YT, Shringarpure R, Tassone P, Neri P et al. Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo. Mol Cancer Ther 2009; 8: 26–35.

    Article  CAS  Google Scholar 

  38. Scuto A, Krejci P, Popplewell L, Wu J, Wang Y, Kujawski M et al. The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia 2011; 25: 538–550.

    Article  CAS  Google Scholar 

  39. Hart S, Goh KC, Novotny-Diermayr V, Hu CY, Hentze H, Tan YC et al. SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia 2011; 26: 1–9.

    Google Scholar 

  40. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR et al. The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24- stem cell-like breast cancer cells in human tumors. J Clin Invest 2011; 121: 1–13.

    Article  Google Scholar 

  41. Gozgit JM, Bebernitz G, Patil P, Ye M, Parmentier J, Wu J et al. Effects of the JAK2 inhibitor, AZ960, on Pim/BAD/BCL-xL survival signaling in the human JAK2V617F cell line SET-2. J Biol Chem 2008; 283: 32334–32343.

    Article  CAS  Google Scholar 

  42. Meyer T, Ruppert V, Görg C, Neubauer A . Activated STAT1 and STAT5 transcription factors in extramedullary hematopoietic tissue in a polycythemia vera patient carrying the JAK2 V617F mutation. Int J Hematol 2010; 91: 117–120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Gary Gilliland for the kind gift of the Ba/F3-engineered cell lines. This work was supported by Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M V Lorenzi.

Ethics declarations

Competing interests

AVP, TMM, HW, DY, BP, XH, RV, YZ, SUR, GLT, LL, MMG, PRM, HS, JH, SLE, YB, EF, TLT KWM, EM, CM, FYL, AW and MVL are employees of Bristol-Myers Squibb, which generated BMS-911543 for clinical trials. All other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purandare, A., McDevitt, T., Wan, H. et al. Characterization of BMS-911543, a functionally selective small-molecule inhibitor of JAK2. Leukemia 26, 280–288 (2012). https://doi.org/10.1038/leu.2011.292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.292

Keywords

This article is cited by

Search

Quick links