Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Regulation of NF-κB signaling by the A20 deubiquitinase

Abstract

The NF-κB transcription factor is a central mediator of inflammatory and innate immune signaling pathways. Activation of NF-κB is achieved by K63-linked polyubiquitination of key signaling molecules which recruit kinase complexes that in turn activate the IκB kinase (IKK). Ubiquitination is a highly dynamic process and is balanced by deubiquitinases that cleave polyubiquitin chains and terminate downstream signaling events. The A20 deubiquitinase is a critical negative regulator of NF-κB and inflammation, since A20-deficient mice develop uncontrolled and spontaneous multi-organ inflammation. Furthermore, specific polymorphisms in the A20 genomic locus predispose humans to autoimmune disease. Recent studies also indicate that A20 is an important tumor suppressor that is inactivated in B-cell lymphomas. Therefore, targeting A20 may form the basis of novel therapies for autoimmune disease and lymphomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hayden MS, Ghosh S . Shared principles in NF-κB signaling. Cell 2008; 132: 344–362.

    CAS  PubMed  Google Scholar 

  2. Hayden MS, Ghosh S . Signaling to NF-κB. Genes Dev 2004; 18: 2195–2224.

    CAS  PubMed  Google Scholar 

  3. Hacker H, Karin M . Regulation and function of IKK and IKK-related kinases. Sci STKE 2006; 2006: re13.

    PubMed  Google Scholar 

  4. Sun SC, Ganchi PA, Ballard DW, Greene WC . NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 1993; 259: 1912–1915.

    CAS  PubMed  Google Scholar 

  5. Hershko A, Ciechanover A . The ubiquitin system. Annu Rev Biochem 1998; 67: 425–479.

    CAS  PubMed  Google Scholar 

  6. Bernassola F, Karin M, Ciechanover A, Melino G . The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 2008; 14: 10–21.

    CAS  PubMed  Google Scholar 

  7. Ikeda F, Dikic I . Atypical ubiquitin chains: new molecular signals. ‘Protein modifications: beyond the usual suspects' review series. EMBO Rep 2008; 9: 536–542.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat Cell Biol 2009; 11: 123–132.

    CAS  PubMed  Google Scholar 

  9. Iwai K, Tokunaga F . Linear polyubiquitination: a new regulator of NF-κB activation. EMBO Rep 2009; 10: 706–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ikeda F, Deribe YL, Skånland SS, Stieglitz B, Grabbe C, Franz-Wachtel M et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 2011; 471: 637–641.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Deng L, Wang C, Spencer E, Yang L, Braun A, You J et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103: 351–361.

    CAS  PubMed  Google Scholar 

  12. Dynek JN, Goncharov T, Dueber EC, Fedorova AV, Izrael-Tomasevic A, Phu L et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 2010; 29: 4198–4209.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsumoto ML, Wickliffe KE, Dong KC, Yu C, Bosanac I, Bustos D et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 2010; 39: 477–484.

    CAS  PubMed  Google Scholar 

  14. Chastagner P, Israel A, Brou C . AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS ONE 2008; 3: e2735.

    PubMed  PubMed Central  Google Scholar 

  15. Wertz IE, Dixit VM . Ubiquitin-mediated regulation of TNFR1 signaling. Cytokine Growth Factor Rev 2008; 19: 313–324.

    CAS  PubMed  Google Scholar 

  16. O'Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT . Ubiquitination of RIP1 regulates an NF-κB-independent cell-death switch in TNF signaling. Curr Biol 2007; 17: 418–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 2011; 471: 591–596.

    CAS  PubMed  Google Scholar 

  18. Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A et al. TAB2 and TAB3 actvate the NF-κB pathway through binding to polyubiquitin chains. Mol Cell 2004; 15: 535–548.

    CAS  PubMed  Google Scholar 

  19. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ . Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006; 22: 245–257.

    CAS  PubMed  Google Scholar 

  20. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ . TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001; 412: 346–351.

    CAS  PubMed  Google Scholar 

  21. Akira S . Toll-like receptor signaling. J Biol Chem 2003; 278: 38105–38108.

    CAS  PubMed  Google Scholar 

  22. Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X . Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 2002; 22: 7158–7167.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Reyes-Turcu FE, Ventii KH, Wilkinson KD . Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78: 363–397.

    CAS  PubMed  Google Scholar 

  24. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123: 773–786.

    CAS  PubMed  Google Scholar 

  25. Ambroggio XI, Rees DC, Deshaies RJ . JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol 2004; 2: E2.

    PubMed  Google Scholar 

  26. Komander D, Clague MJ, Urbe S . Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10: 550–563.

    CAS  PubMed  Google Scholar 

  27. Harhaj EW, Dixit VM . Deubiquitinases in the regulation of NF-κB signaling. Cell Res 2011; 21: 22–39.

    CAS  PubMed  Google Scholar 

  28. Sun SC . CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death Differ 2010; 17: 25–34.

    CAS  PubMed  Google Scholar 

  29. Opipari AW Jr, Boguski MS, Dixit VM . The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 1990; 265: 14705–14708.

    CAS  PubMed  Google Scholar 

  30. Krikos A, Laherty CD, Dixit VM . Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by κB elements. J Biol Chem 1992; 267: 17971–17976.

    CAS  PubMed  Google Scholar 

  31. Laherty CD, Perkins ND, Dixit VM . Human T cell leukemia virus type I Tax and phorbol 12-myristate 13-acetate induce expression of the A20 zinc finger protein by distinct mechanisms involving nuclear factor κB. J Biol Chem 1993; 268: 5032–5039.

    CAS  PubMed  Google Scholar 

  32. Opipari AW Jr, Hu HM, Yabkowitz R, Dixit VM . The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem 1992; 267: 12424–12427.

    CAS  PubMed  Google Scholar 

  33. Jaattela M, Mouritzen H, Elling F, Bastholm L . A20 zinc finger protein inhibits TNF and IL-1 signaling. J Immunol 1996; 156: 1166–1173.

    CAS  PubMed  Google Scholar 

  34. Song HY, Rothe M, Goeddel DV . The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation. Proc Natl Acad Sci USA 1996; 93: 6721–6725.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Heyninck K, de Valck D, Vanden Berghe W, van Criekinge W, Contreras R, Fiers W et al. The zinc finger protein A20 inhibits TNF-induced NF-κB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-κB-inhibiting protein ABIN. J Cell Biol 1999; 145: 1471–1482.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Heyninck K, Beyaert R . The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-κB activation at the level of TRAF6. FEBS Lett 1999; 442: 147–150.

    CAS  PubMed  Google Scholar 

  37. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 2000; 289: 2350–2354.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Evans PC Ovaa H, Hamon M, Kilshaw PJ, Hamm S, Bauer S et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J 2004; 378: 727–734.

    PubMed  Google Scholar 

  39. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L Seshagiri S et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 2004; 430: 694–699.

    CAS  PubMed  Google Scholar 

  40. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5: 1052–1060.

    CAS  PubMed  Google Scholar 

  41. Shembade N, Ma A, Harhaj EW . Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010; 327: 1135–1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bosanac I, Wertz IE, Pan B, Yu C, Kusam S, Lam C et al. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Mol Cell 2010; 40: 548–557.

    CAS  PubMed  Google Scholar 

  43. Li L, Soetandyo N, Wang Q, Ye Y . The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim Biophys Acta 2009; 1793: 346–353.

    CAS  PubMed  Google Scholar 

  44. Klinkenberg M, van Huffel S, Heyninck K, Beyaert R . Functional redundancy of the zinc fingers of A20 for inhibition of NF-κB activation and protein-protein interactions. FEBS Lett 2001; 498: 93–97.

    CAS  PubMed  Google Scholar 

  45. Skaug B, Chen J, Du F, He J, Ma A, Chen ZJ . Direct, Noncatalytic Mechanism of IKK Inhibition by A20. Mol Cell 2011; 44: 559–571.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tewari M, Wolf FW, Seldin MF, O'Shea KS, Dixit VM, Turka LA . Lymphoid expression and regulation of A20, an inhibitor of programmed cell death. J Immunol 1995; 154: 1699–1706.

    CAS  PubMed  Google Scholar 

  47. Turer EE, Tavares R, Hitotsumatsu O, Advincula R, Lee BL, Shifrin N et al. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J Exp Med 2008; 205: 451–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tavares RM, Turer EE, Liu CL, Advincula R, Scapini P, Rhee L et al. The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity. Immunity 2010; 33: 181–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chu Y, Vahl JC, Kumar D, Heger K, Bertossi A, Wójtowicz E et al. B cells lacking the tumor suppressor TNFAIP3/A20 display impaired differentiation and hyperactivation and cause inflammation and autoimmunity in aged mice. Blood 2011; 117: 2227–2236.

    CAS  PubMed  Google Scholar 

  50. Hovelmeyer N, Reissig S, Xuan NT, Adams-Quack P, Lukas D, Nikolaev A et al. A20 deficiency in B cells enhances B-cell proliferation and results in the development of autoantibodies. Eur J Immunol 2011; 41: 595–601.

    PubMed  Google Scholar 

  51. Hammer GE, Turer EE, Taylor KE, Fang CJ, Advincula R, Oshima S et al. Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis. Nat Immunol 2011; 12: 1184–1193.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kool M, van Loo G, Waelput W, de Prijck S, Muskens F, Sze M et al. The ubiquitin-editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. Immunity 2011; 35: 82–96.

    CAS  PubMed  Google Scholar 

  53. Song XT, Evel-Kabler K, Rollins L, Aldrich M, Huang XF, Chen SY . A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression. Nat Med 2008; 14: 258–265.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Arsenescu R, Bruno ME, Rogier EW, Stefka AT, McMahan AE, Wright TB et al. Signature biomarkers in Crohn's disease: toward a molecular classification. Mucosal Immunol 2008; 1: 399–411.

    CAS  PubMed  Google Scholar 

  55. Vereecke L, Sze M, Mc Guire C, Rogiers B, Chu Y, Schmidt-Supprian M et al. Enterocyte-specific A20 deficiency sensitizes to tumor necrosis factor-induced toxicity and experimental colitis. J Exp Med 2010; 207: 1513–1523.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kolodziej LE, Jacques P, Maelfait J, Verheugen E, Kool M, Sze M et al. TNFAIP3 maintains intestinal barrier function and supports epithelial cell tight junctions. PLoS ONE 2011; 6: e26352.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Matmati M, Jacques P, Maelfait J, Verheugen E, Kool M, Sze M et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet 2011; 43: 908–912.

    CAS  PubMed  Google Scholar 

  58. Raychaudhuri S, Remmers EF, Lee AT, Hackett R, Guiducci C, Burtt NP et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet 2008; 40: 1216–1223.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lippens S, Lefebvre S, Gilbert B, Sze M, Devos M, Verhelst K et al. Keratinocyte-specific ablation of the NF-κB regulatory protein A20 (TNFAIP3) reveals a role in the control of epidermal homeostasis. Cell Death Differ. 2011; 18: 1845–1853.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Núñez G et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. EMBO J 2008; 27: 373–383.

    CAS  PubMed  Google Scholar 

  61. Hitotsumatsu O, Ahmad RC, Tavares R, Wang M, Philpott D, Turer EE et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 2008; 28: 381–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Blonska M, Lin X . NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res 2011; 21: 55–70.

    CAS  PubMed  Google Scholar 

  63. Duwel M, Welteke V, Oeckinghaus A, Baens M, Kloo B, Ferch U et al. A20 negatively regulates T cell receptor signaling to NF-κB by cleaving Malt1 ubiquitin chains. J Immunol 2009; 182: 7718–7728.

    PubMed  Google Scholar 

  64. Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, Staal J et al. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nat Immunol 2008; 9: 263–271.

    CAS  PubMed  Google Scholar 

  65. Komander D, Reyes-Turcu F, Licchesi JD, Odenwaelder P, Wilkinson KD, Barford D . Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 2009; 10: 466–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gachon F, Peleraux A, Thebault S, Dick J, Lemasson I, Devaux C et al. CREB-2, a cellular CRE-dependent transcription repressor, functions in association with Tax as an activator of the human T-cell leukemia virus type 1 promoter. J Virol 1998; 72: 8332–8337.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. de Valck D, Jin DY, Heyninck K, van de Craen M, Contreras R, Fiers W et al. The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene 1999; 18: 4182–4190.

    CAS  PubMed  Google Scholar 

  68. Ling L, Goeddel DV . T6BP, a TRAF6-interacting protein involved in IL-1 signaling. Proc Natl Acad Sci USA 2000; 97: 9567–9572.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Iha H, Peloponese JM, Verstrepen L, Zapart G, Ikeda F, Smith CD et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J 2008; 27: 629–641.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Shembade N, Harhaj NS, Liebl DJ, Harhaj EW . Essential role for TAX1BP1 in the termination of TNF-α-, IL-1- and LPS-mediated NF-κB and JNK signaling. EMBO J 2007; 26: 3910–3922.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kitching R, Wong MJ, Koehler D, Burger AM, Landberg G, Gish G et al. The RING-H2 protein RNF11 is differentially expressed in breast tumours and interacts with HECT-type E3 ligases. Biochim Biophys Acta 2003; 1639: 104–112.

    CAS  PubMed  Google Scholar 

  72. Sudol M, Chen HI, Bougeret C, Einbond A, Bork P . Characterization of a novel protein-binding module—the WW domain. FEBS Lett 1995; 369: 67–71.

    CAS  PubMed  Google Scholar 

  73. Shembade N, Harhaj NS, Parvatiyar K, Copeland NG, Jenkins NA, Matesic LE et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol 2008; 9: 254–262.

    CAS  PubMed  Google Scholar 

  74. Matesic LE, Copeland NG, Jenkins NA . Itchy mice: the identification of a new pathway for the development of autoimmunity. Curr Top Microbiol Immunol 2008; 321: 185–200.

    CAS  PubMed  Google Scholar 

  75. Subramaniam V, Li H, Wong M, Kitching R, Attisano L, Wrana J et al. The RING-H2 protein RNF11 is overexpressed in breast cancer and is a target of Smurf2 E3 ligase. Br J Cancer 2003; 89: 1538–1544.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Azmi P, Seth A . RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation. Eur J Cancer 2005; 41: 2549–2560.

    CAS  PubMed  Google Scholar 

  77. Santonico E, Belleudi F, Panni S, Torrisi MR, Cesareni G, Castagnoli L . Multiple modification and protein interaction signals drive the Ring finger protein 11 (RNF11) E3 ligase to the endosomal compartment. Oncogene 2010; 29: 5604–5618.

    CAS  PubMed  Google Scholar 

  78. Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A et al. Functional proteomics mapping of a human signaling pathway. Genome Res 2004; 14: 1324–1332.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW . The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-κB signalling. EMBO J 2009; 28: 513–522.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Heyninck K, Kreike MM, Beyaert R . Structure-function analysis of the A20-binding inhibitor of NF-κB activation, ABIN-1. FEBS Lett 2003; 536: 135–140.

    CAS  PubMed  Google Scholar 

  81. Mauro C, Pacifico F, Lavorgna A, Mellone S, Iannetti A . ABIN-1 binds to NEMO/IKKγ and co-operates with A20 in inhibiting NF-κB. J Biol Chem 2006; 281: 18482–18488.

    CAS  PubMed  Google Scholar 

  82. Oshima S, Turer EE, Callahan JA, Chai S, Advincula R, Barrera J et al. ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development. Nature 2009; 457: 906–909.

    CAS  PubMed  Google Scholar 

  83. Zhou J, Wu R, High AA, Slaughter CA, Finkelstein D, Rehg JE et al. A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein beta activation and protects from inflammatory disease. Proc Natl Acad Sci USA 2011; 108: E998–E1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wagner S, Carpentier I, Rogov V, Kreike M, Ikeda F, Löhr F et al. Ubiquitin binding mediates the NF-κB inhibitory potential of ABIN proteins. Oncogene 2008; 27: 3739–3745.

    CAS  PubMed  Google Scholar 

  85. Nanda SK, Venigalla RK, Ordureau A, Patterson-Kane JC, Powell DW, Toth R et al. Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. J Exp Med 2011; 208: 1215–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Vincenz C, Dixit VM . 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J Biol Chem 1996; 271: 20029–20034.

    CAS  PubMed  Google Scholar 

  87. de Valck D, Heyninck K, van Criekinge W, Vandenabeele P, Fiers W, Beyaert R . A20 inhibits NF-κB activation independently of binding to 14-3-3 proteins. Biochem Biophys Res Commun 1997; 238: 590–594.

    CAS  PubMed  Google Scholar 

  88. Bohgaki M, Tsukiyama T, Nakajima A, Maruyama S, Watanabe M, Koike T et al. Involvement of Ymer in suppression of NF-κB activation by regulated interaction with lysine-63-linked polyubiquitin chain. Biochim Biophys Acta 2008; 1783: 826–837.

    CAS  PubMed  Google Scholar 

  89. Shembade N, Pujari R, Harhaj NS, Abbott DW, Harhaj EW . The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylating the regulatory molecule TAX1BP1. Nat Immunol 2011; 12: 834–843.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lawrence T, Bebien M, Liu GY, Nizet V, Karin M . IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 2005; 434: 1138–1143.

    CAS  PubMed  Google Scholar 

  91. Li Q, Lu Q, Bottero V, Estepa G, Morrison L, Mercurio F et al. Enhanced NF-κB activation and cellular function in macrophages lacking IκB kinase 1 (IKK1). Proc Natl Acad Sci USA 2005; 102: 12425–12430.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hutti JE, Abbott DW, Zhou AY, Sprott KM, Asara JM, Hahn WC . IKKβ Phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-κB pathway. Mol Cell Biol 2007; 27: 7451–7461.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 2009; 459: 717–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 2009; 459: 712–716.

    CAS  PubMed  Google Scholar 

  95. Honma K, Tsuzuki S, Nakagawa M, Tagawa H, Nakamura S, Morishima Y et al. TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 2009; 114: 246–275.

    Google Scholar 

  96. Chanudet E, Huang Y, Ichimura K, Dong G, Hamoudi RA, Radford J et al. A20 is targeted by promoter methylation, deletion and inactivating mutation in MALT lymphoma. Leukemia 2010; 24: 483–487.

    CAS  PubMed  Google Scholar 

  97. Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 2009; 206: 981–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Braun FC, Grabarczyk P, Möbs M, Braun FK, Eberle J, Beyer M et al. Tumor suppressor TNFAIP3 (A20) is frequently deleted in Sezary syndrome. Leukemia 2011; 25: 1494–1501.

    CAS  PubMed  Google Scholar 

  99. Ferch U, Kloo B, Gewies A, Pfänder V, Düwel M, Peschel C et al. Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2009; 206: 2313–2320.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Vendrell JA, Ghayad S, Ben-Larbi S, Dumontet C, Mechti N, Cohen PA . A20/TNFAIP3, a new estrogen-regulated gene that confers tamoxifen resistance in breast cancer cells. Oncogene 2007; 26: 4656–4667.

    CAS  PubMed  Google Scholar 

  101. Guo Q, Dong H, Liu X, Wang C, Liu N, Zhang J et al. A20 is overexpressed in glioma cells and may serve as a potential therapeutic target. Expert Opin Ther Targets 2009; 13: 733–741.

    CAS  PubMed  Google Scholar 

  102. Hjelmeland AB, Wu Q, Wickman S, Eyler C, Heddleston J, Shi Q et al. Targeting A20 decreases glioma stem cell survival and tumor growth. PLoS Biol 2010; 8: e1000319.

    PubMed  PubMed Central  Google Scholar 

  103. Sun SC . Deubiquitylation and regulation of the immune response. Nat Rev Immunol 2008; 8: 501–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ahmed N, Zeng M, Sinha I, Polin L, Wei WZ, Rathinam C et al. The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation. Nat Immunol 2011; 12: 1176–1183.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The laboratory of E W Harhaj is supported by NIH grant nos. PO1CA128115, RO1CA135362 and RO1GM083143.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Noula Shembade or Edward W Harhaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shembade, N., Harhaj, E. Regulation of NF-κB signaling by the A20 deubiquitinase. Cell Mol Immunol 9, 123–130 (2012). https://doi.org/10.1038/cmi.2011.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2011.59

Keywords

This article is cited by

Search

Quick links