Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Homeostasis of αβ TCR+ T cells

Abstract

Cytokines contribute to T cell homeostasis at all stages of T cell existence. However, the particular cytokine involved varies as T cells progress from a naïve through an activated to a memory state. In many cases the important cytokines are members of the interleukin 2 subfamily of the short-chain type I cytokines. A case is made for the idea that the evolutionary divergence of the short-chain family allowed for concurrent divergence in leukocytes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: CD8+ T cells have different needs for cytokines at different stages in their lives.
Figure 3

Similar content being viewed by others

References

  1. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–87 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Butz, E. & Bevan, M.J. Dynamics of the CD8+ T cell response during acute LCMV infection. Adv. Exp. Med. Biol. 452, 111–22 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  3. Varga, S.M. & Welsh, R.M. Detection of a high frequency of virus-specific CD4+ T cells during acute infection with lymphocytic choriomeningitis virus. J. Immunol. 161, 3215–8 (1998).

    CAS  PubMed  Google Scholar 

  4. Selin, L.K. et al. Attrition of T cell memory: selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11, 733–42 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  5. Pullen, A.M., Potts, W., Wakeland, E.K., Kappler, J. & Marrack, P. Surprisingly uneven distribution of the T cell receptor Vβ repertoire in wild mice. J. Exp. Med. 171, 49–62 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Berg, L.J. et al. Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand. Cell 58, 1035–46 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–9 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  8. Kisielow, P., Teh, H.S., Bluthmann, H. & von Boehmer, H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335, 730–3 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  9. Murphy, K.M., Heimberger, A.B. & Loh, D.Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720–3 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  10. Kelly, K.A., Pircher, H., von Boehmer, H., Davis, M.M. & Scollay, R. Regulation of T cell production in T cell receptor transgenic mice. Eur. J. Immunol. 23, 1922–8 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Huesmann, M., Scott, B., Kisielow, P. & von Boehmer, H. Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 66, 533– 40 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Piguet, P.F., Irle, C., Kollatte, E. & Vassalli, P. Post-thymic T lymphocyte maturation during ontogenesis. J. Exp. Med. 154, 581–93 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Ignatowicz, L., Kappler, J. & Marrack, P. The effects of chronic infection with a superantigen-producing virus. J. Exp. Med. 175, 917– 23 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Stutman, O. Intrathymic and extrathymic T cell maturation. Immunol. Rev. 42, 138–84 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Rocha, B., Freitas, A.A. & Coutinho, A.A. Population dynamics of T lymphocytes. Renewal rate and expansion in the peripheral lymphoid organs. J. Immunol. 131, 2158–64 (1983).

    CAS  PubMed  Google Scholar 

  16. Freitas, A.A., Rocha, B. & Coutinho, A.A. Lymphocyte population kinetics in the mouse. Immunol. Rev. 91, 5–37 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  17. Rocha, B., Dautigny, N. & Pereira, P. Peripheral T lymphocytes: expansion potential and homeostatic regulation of pool sizes and CD4/CD8 ratios in vivo. Eur. J. Immunol. 19, 905–11 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  18. Rocha, B. et al. Accumulation of bromodeoxyuridine-labeled cells in central and peripheral lymphoid organs: minimal estimates of production and turnover rates of mature lymphocytes. Eur. J. Immunol. 20, 1697–708 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Modigliani, Y., Coutinho, G., Burlen-Defranoux, O., Coutinho, A. & Bandeira, A. Differential contribution of thymic outputs and peripheral expansion in the development of peripheral T cell pools . Eur. J. Immunol. 24, 1223– 7 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. von Boehmer, H. & Hafen, K. The life span of naive αβ T cells in secondary lymphoid organs. J. Exp. Med. 177, 891–6 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  21. Miller, R.A. & Stutman, O. T cell repopulation from functionally restricted splenic progenitors: 10,000-fold expansion documented by using limiting dilution analyses. J. Immunol. 133, 2925–32 (1984).

    CAS  PubMed  Google Scholar 

  22. Pereira, P. & Rocha, B. Post-thymic in vivo expansion of mature αβ T cells. Int. Immunol. 3, 1077–80 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Beutner, U. & MacDonald, H.R. TCR-MHC class II interaction is required for peripheral expansion of CD4 cells in a T cell-deficient host . Int. Immunol. 10, 305– 10 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Bender, J., Mitchell, T., Kappler, J. & Marrack, P. CD4+ T cell division in irradiated mice requires peptides distinct from those responsible for thymic selection. J. Exp. Med. 190, 367–74 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ernst, B., Lee, D.S., Chang, J.M., Sprent, J. & Surh, C.D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery . Immunity 11, 173–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Goldrath, A.W. & Bevan, M.J. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183– 90 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bachmann, M.F., Oxenius, A., Mak, T.W. & Zinkernagel, R.M. T cell development in CD8−/− mice. Thymic positive selection is biased toward the helper phenotype. J. Immunol. 155, 3727–33 (1995).

    CAS  PubMed  Google Scholar 

  28. Sim, B.C. et al. Thymic skewing of the CD4/CD8 ratio maps with the T-cell receptor α-chain locus. Curr. Biol. 8, 701– 4 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Yu, X., Fournier, S., Allison, J.P., Sharpe, A.H. & Hodes, R.J. The role of B7 costimulation in CD4/CD8 T cell homeostasis. J. Immunol. 164, 3543–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Wallis, V.J., Leuchars, E., Chaudhuri, M. & Davies, A.J. Studies on hyperlymphoid mice. Immunology 38, 163–71 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Berzins, S.P., Godfrey, D.I., Miller, J.F. & Boyd, R.L. A central role for thymic emigrants in peripheral T cell homeostasis. Proc. Natl Acad. Sci. USA 96, 9787– 91 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thomis, D.C. & Berg, L.J. Peripheral expression of Jak3 is required to maintain T lymphocyte function. J. Exp. Med. 185, 197–206 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hassan, J. & Reen, D.J. IL-7 promotes the survival and maturation but not differentiation of human post-thymic CD4+ T cells. Eur. J. Immunol. 28, 3057–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Boursalian, T.E. & Bottomly, K. Survival of naive CD4 T cells: roles of restricting versus selecting MHC class II and cytokine milieu. J. Immunol. 162, 3795– 801 (1999).

    CAS  PubMed  Google Scholar 

  35. Webb, L.M., Foxwell, B.M. & Feldmann, M. Putative role for interleukin-7 in the maintenance of the recirculating naive CD4+ T-cell pool. Immunology 98, 400–5 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Teague, T.K. et al. Activation-induced inhibition of interleukin 6-mediated T cell survival and signal transducer and activator of transcription 1 signaling . J. Exp. Med. 191, 915– 26 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Araneo, B.A., Marrack, P. & Kappler, J.W. Functional heterogeneity among the T-derived lymphocytes of the mouse. VII. Conversion of T1 cells to T2 cells by antigen. J. Immunol. 119, 765–71 (1977).

    CAS  PubMed  Google Scholar 

  38. Callahan, J.E., Kappler, J.W. & Marrack, P. Unexpected expansions of CD8-bearing cells in old mice . J. Immunol. 151, 6657– 69 (1993).

    CAS  PubMed  Google Scholar 

  39. Tough, D.F. & Sprent, J. Life span of naive and memory T cells . Stem Cells 13, 242–9 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Gabor, M.J., Scollay, R. & Godfrey, D.I. Thymic T cell export is not influenced by the peripheral T cell pool. Eur. J. Immunol. 27, 2986– 93 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. van Meerwijk, J.P., Marguerat, S. & MacDonald, H.R. Homeostasis limits the development of mature CD8+ but not CD4+ thymocytes. J. Immunol. 160, 2730–4 (1998).

    CAS  PubMed  Google Scholar 

  42. Douek, D.C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690– 5 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Ku, C.C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of Homeostasis of CD8(+) Memory T Cells by Opposing Cytokines. Science 288, 675–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Kieper, W.C. & Jameson, S.C. Homeostatic expansion and phenotypic conversion of naive T cells in response to self peptide/MHC ligands. Proc. Natl Acad. Sci. USA 96, 13306– 11 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brocker, T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J. Exp. Med. 186, 1223–32 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kirberg, J., Berns, A. & von Boehmer, H. Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules . J. Exp. Med. 186, 1269– 75 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tanchot, C., Lemonnier, F.A., Perarnau, B., Freitas, A.A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Teague, T.K., Marrack, P., Kappler, J.W. & Vella, A.T. IL-6 rescues resting mouse T cells from apoptosis. J. Immunol. 158, 5791–6 ( 1997).

    CAS  PubMed  Google Scholar 

  49. Vella, A., Teague, T.K., Ihle, J., Kappler, J. & Marrack, P. Interleukin 4 (IL-4) or IL-7 prevents the death of resting T cells: stat6 is probably not required for the effect of IL-4. J. Exp. Med. 186, 325–30 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Soares, M.V. et al. IL-7-dependent extrathymic expansion of CD45RA+ T cells enables preservation of a naive repertoire. J. Immunol. 161, 5909–17 ( 1998).

    CAS  PubMed  Google Scholar 

  51. Park, S.Y. et al. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3, 771–82 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Maraskovsky, E. et al. Impaired survival and proliferation in IL-7 receptor-deficient peripheral T cells. J. Immunol. 157, 5315 –23 (1996).

    CAS  PubMed  Google Scholar 

  53. Vicari, A.P. et al. NK1.1+ T cells from IL-7-deficient mice have a normal distribution and selection but exhibit impaired cytokine production . Int. Immunol. 8, 1759– 66 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Lortat-Jacob, H., Garrone, P., Banchereau, J. & Grimaud, J.A. Human interleukin 4 is a glycosaminoglycan-binding protein. Cytokine 9, 101–5 (1997 ).

    Article  CAS  PubMed  Google Scholar 

  55. Wrenshall, L.E. & Platt, J.L. Regulation of T cell homeostasis by heparan sulfate-bound IL-2. J. Immunol. 163, 3793–800 (1999).

    CAS  PubMed  Google Scholar 

  56. Jenkins, M.K., Taylor, P.S., Norton, S.D. & Urdahl, K.B. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J. Immunol. 147, 2461– 6 (1991).

    CAS  PubMed  Google Scholar 

  57. Chambers, C.A. & Allison, J.P. Co-stimulation in T cell responses. Curr. Opin. Immunol. 9, 396–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Godfrey, W.R., Fagnoni, F.F., Harara, M.A., Buck, D. & Engleman, E.G. Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J. Exp. Med. 180, 757– 62 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Pollok, K. =E. et al. Inducible T cell antigen 4-1BB. Analysis of expression and function. J. Immunol. 150, 771– 81 (1993).

    CAS  PubMed  Google Scholar 

  60. Brown, G. R., Meek, K., Nishioka, Y. & Thiele, D.L. CD27-CD27 ligand/CD70 interactions enhance alloantigen-induced proliferation and cytolytic activity in CD8+ T lymphocytes. J. Immunol. 154 , 3686–95 (1995).

    CAS  PubMed  Google Scholar 

  61. Kuhlman, P., Moy, V.T., Lollo, B.A. & Brian, A.A. The accessory function of murine intercellular adhesion molecule-1 in T lymphocyte activation. Contributions of adhesion and co-activation. J. Immunol. 146, 1773–82 (1991).

    CAS  PubMed  Google Scholar 

  62. Cai, Z. et al. Transfected Drosophila cells as a probe for defining the minimal requirements for stimulating unprimed CD8+ T cells. Proc. Natl Acad. Sci. USA 93, 14736– 41 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Breitmeyer, J.B., Daley, J.F., Levine, H.B. & Schlossman, S.F. The T11 (CD2) molecule is functionally linked to the T3/Ti T cell receptor in the majority of T cells. J. Immunol. 139, 2899–905 (1987).

    CAS  PubMed  Google Scholar 

  64. June, C.H., Ledbetter, J.A., Linsley, P.S. & Thompson, C.B. Role of the CD28 receptor in T-cell activation. Immunol. Today 11, 211–6 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  65. Boise, L.H., Minn, A.J., June, C.H., Lindsten, T. & Thompson, C.B. Growth factors can enhance lymphocyte survival without committing the cell to undergo cell division. Proc. Natl Acad. Sci. USA 92, 5491–5 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Akbar, A.N. et al. Interleukin-2 receptor common α-chain signaling cytokines regulate activated T cell apoptosis in response to growth factor withdrawal: selective induction of anti-apoptotic (bcl-2, bcl-xL) but not pro-apoptotic (bax, bcl-xS) gene expression. Eur. J. Immunol. 26, 294–9 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Vella, A.T., Dow, S., Potter, T.A., Kappler, J. & Marrack, P. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc. Natl Acad. Sci. USA 95, 3810–5 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marrack, P., Kappler, J. & Mitchell, T. Type I interferons keep activated T cells alive. J. Exp. Med. 189, 521–30 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boise, L.H., Minn, A.J. & Thompson, C.B. Receptors that regulate T-cell susceptibility to apoptotic cell death. Ann. NY Acad. Sci. 766, 70– 80 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Mitchell, T., Kappler, J. & Marrack, P. Bystander virus infection prolongs activated T cell survival. J. Immunol. 162, 4527– 35 (1999).

    CAS  PubMed  Google Scholar 

  71. Garcia, S., DiSanto, J. & Stockinger, B. Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 11, 163–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Van Parijs, L., Ibraghimov, A. & Abbas, A.K. The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity 4, 321 –8 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Sytwu, H.K., Liblau, R.S. & McDevitt, H.O. The roles of Fas/APO-1 (CD95) and TNF in antigen-induced programmed cell death in T cell receptor transgenic mice. Immunity 5, 17–30 (1996 ).

    Article  CAS  PubMed  Google Scholar 

  74. Hildeman, D.A. et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735– 44 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Lemasters, J.J. et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366, 177–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Askonas, B.A., Mullbacher, A. & Ashman, R.B. Cytotoxic T-memory cells in virus infection and the specificity of helper T cells. Immunology 45, 79–84 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Owen, J.A., Allouche, M. & Doherty, P.C. Limiting dilution analysis of the specificity of influenza-immune cytotoxic T cells. Cell Immunol. 67, 49– 59 (1982).

    Article  CAS  PubMed  Google Scholar 

  78. Gray, D. & Matzinger, P. T cell memory is short-lived in the absence of antigen. J. Exp. Med. 174, 969–74 (1991).

    Article  CAS  PubMed  Google Scholar 

  79. Swain, S.L. Generation and in vivo persistence of polarized Th1 and Th2 memory cells. Immunity 1, 543– 52 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Whitmire, J.K., Asano, M.S., Murali-Krishna, K., Suresh, M. & Ahmed, R. Long-term CD4 Th1 and Th2 memory following acute lymphocytic choriomeningitis virus infection. J. Virol. 72, 8281–8 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327– 39 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Vella, A.T., McCormack, J.E., Linsley, P.S., Kappler, J.W. & Marrack, P. Lipopolysaccharide interferes with the induction of peripheral T cell death. Immunity 2, 261–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Bui, J.D. et al. A role for CaMKII in T cell memory. Cell 100, 457–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Ochsenbein, A.F. et al. A comparison of T cell memory against the same antigen induced by virus versus intracellular bacteria. Proc. Natl Acad. Sci. USA 96, 9293–8 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hou, S., Hyland, L., Ryan, K.W., Portner, A. & Doherty, P.C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652– 4 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Lau, L.L., Jamieson, B.D., Somasundaram, T. & Ahmed, R. Cytotoxic T-cell memory without antigen. Nature 369 , 648–52 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Swain, S.L., Hu, H. & Huston, G. Class II-independent generation of CD4 memory T cells from effectors. Science 286, 1381–3 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  88. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377– 81 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Xiang, R., Lode, H.N., Gillies, S.D. & Reisfeld, R.A. T cell memory against colon carcinoma is long-lived in the absence of antigen . J. Immunol. 163, 3676– 83 (1999).

    CAS  PubMed  Google Scholar 

  90. Morales, J. et al. CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc. Natl Acad. Sci. USA 96, 14470–5 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, X., Sun, S., Hwang, I., Tough, D.F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Smith, H., Lou, Y.H., Lacy, P. & Tung, K.S. Tolerance mechanism in experimental ovarian and gastric autoimmune diseases. J. Immunol. 149, 2212–8 ( 1992).

    CAS  PubMed  Google Scholar 

  94. Powrie, F., Leach, M.W., Mauze, S., Caddle, L.B. & Coffman, R.L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol. 5, 1461– 71 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Thornton, A.M. & Shevach, E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–96 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Harrington, L.E., Galvan, M., Baum, L.G., Altman, J.D. & Ahmed, R. Differentiating between memory and effector CD8 T cells by altered expression of cell surface O-glycans. J. Exp. Med. 191, 1241–6 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Slifka, M.K. & Whitton, J.L. Activated and memory CD8+ T cells can be distinguished by their cytokine profiles and phenotypic markers. J. Immunol. 164, 208–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Cho, B.K., Wang, C., Sugawa, S., Eisen, H.N. & Chen, J. Functional differences between memory and naive CD8 T cells. Proc. Natl Acad. Sci. USA 96, 2976 –81 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lodolce, J.P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Sprang, S.R. & Bazan, J.F. Cytokine structural taxonomy and mechanisms of receptor engagement. Curr. Op. Struct. Biol. 3, 815–819 (1993).

    Article  CAS  Google Scholar 

  101. Leonard, W.J. in Fundamental Immunology (ed. Paul, W.E.) 741–774 (Lippencott-Raven Publishers, Philadelphia, 1999).

    Google Scholar 

  102. Umeda, S., Takahashi, K., Shultz, L.D., Naito, M. & Takagi, K. Effects of macrophage colony-stimulating factor on macrophages and their related cell populations in the osteopetrosis mouse defective in production of functional macrophage colony-stimulating factor protein. Am. J. Pathol. 149, 559– 74 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ashman, L.K. The biology of stem cell factor and its receptor C-kit. Int. J. Biochem. Cell Biol. 31, 1037–51 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Mangi, M.H. & Newland, A.C. Interleukin-3 in hematology and oncology: current state of knowledge and future directions. Cytok. Cell Mol. Ther. 5, 87–95 (1999).

    CAS  Google Scholar 

  105. Zhan, Y. & Cheers, C. Haemopoiesis in mice genetically lacking granulocyte-macrophage colony stimulating factor during chronic infection with mycobacterium avium. Immunol. Cell Biol. 78, 118–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Roboz, G.J. & Rafii, S. Interleukin-5 and the regulation of eosinophil production. Curr. Opin. Hematol. 6, 164–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Hofmeister, R. et al. Interleukin-7: physiological roles and mechanisms of action . Cytok. Grow. Fact. Rev. 10, 41– 60 (1999).

    Article  CAS  Google Scholar 

  108. Shirakawa, I. et al. Atopy and asthma: genetic variants of IL-4 and IL-13 signalling . Immunol Today 21, 60– 4 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Renauld, J.C., Kermouni, A., Vink, A., Louahed, J. & Van Snick, J. Interleukin-9 and its receptor: involvement in mast cell differentiation and T cell oncogenesis. J Leuk. Biol. 57, 353–60 (1995).

    Article  CAS  Google Scholar 

  110. Jensen, P.L. The interleukin 13 receptor complex. Stem Cells 18, 61–2 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the USPHS. M.M. was supported by a fellowship for research abroad from the JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippa Marrack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrack, P., Bender, J., Hildeman, D. et al. Homeostasis of αβ TCR+ T cells. Nat Immunol 1, 107–111 (2000). https://doi.org/10.1038/77778

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing