Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity

Abstract

B ymphocyte stimulator (BLyS) is a member of the tumor necrosis factor (TNF) superfamily. BLyS stimulates proliferation of, and immunoglobulin production by, B cells. However, the relative importance of BLyS in physiological B cell activation is unclear. We identified a B cell receptor for BLyS through expression cloning as TACI, an orphan TNF receptor homologue of unknown function. Binding of BLyS to TACI activated signaling by nuclear factor-κB (NF-κB). In vitro soluble TACI-Fc fusion protein blocked BLyS-induced NF-κB activation in B lymphoma cells and IgM production in peripheral blood B cells. In vivo treatment of immunized mice with TACI-Fc inhibited production of antigen-specific IgM and IgG1 antibodies and abolished splenic germinal center (GC) formation. Thus, BLyS activity must play a critical role in the humoral immune response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of TACI with BlyS on cells.
Figure 2: Interaction of TACI and BLyS in solution.
Figure 3: BLyS activates NF-κB through TACI.
Figure 4: Inhibition of BLyS activity in vitro by TACI-Fc.
Figure 5: TACI-Fc inhibits antigen-specific antibody responses in vivo.
Figure 6: TACI-Fc inhibits antigen-induced splenic B cell activation and GC formation.

Similar content being viewed by others

References

  1. Gruss, H. J. & Dower, S. K. Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood 85, 3378–3404 (1995).

    CAS  PubMed  Google Scholar 

  2. Smith, C. A., Farrah, T. & Goodwin, R. G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76, 959–962 (1994).

    CAS  PubMed  Google Scholar 

  3. Ashkenazi, A. & Dixit, V. M. Death receptors: signling and modulation. Science 281, 1305–1308 (1998).

    CAS  PubMed  Google Scholar 

  4. Moore, P.A. et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285, 260–263 (1999).

    CAS  PubMed  Google Scholar 

  5. Shu, H. B., Hu, W. H. & Johnson, H. TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. J. Leukocyte Biol. 65, 680–683 (1999).

    CAS  PubMed  Google Scholar 

  6. Mukhopadhyay, A., Ni, J., Zhai, Y., Yu, G. L. & Aggarwal, B. B. Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-kappaB, and c-Jun NH2-terminal kinase. J. Biol. Chem. 274, 15978–15981 (1999).

    CAS  PubMed  Google Scholar 

  7. Schneider, P. et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189, 1747–1756 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kahre, S. D. et al. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc. Natl Acad. Sci. USA 97, 3370–3375 (2000).

    Google Scholar 

  10. Flanagan, J. G. & Leder, P. The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. Cell 63, 185–194 (1990).

    CAS  PubMed  Google Scholar 

  11. von Bulow, G. U. & Bram, R. J. NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily. Science 278, 138–141 (1997).

    CAS  PubMed  Google Scholar 

  12. Pennica, D. et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312, 724–729 (1984).

    CAS  PubMed  Google Scholar 

  13. Mauri, D. et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for Herpesvirus Entry Mediator. Immunity 8, 21–30 (1998).

    CAS  PubMed  Google Scholar 

  14. Ashkenazi, A. et al. Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc. Natl Acad. Sci. USA 88, 10535–10539 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pitti, R. M. et al. Induction of apoptosis by Apo-2 Ligand, a new member of the tumor necrosis factor receptor family. J. Biol. Chem. 271, 12697–12690 (1996).

    Google Scholar 

  16. Marsters, S. A. et al. Identification of a ligand for the death-domain-containing receptor Apo3. Curr. Biol. 8, 525–528 (1998).

    CAS  PubMed  Google Scholar 

  17. Wong, B. R. et al. TRANCE is a novel ligand of the TNFR family that activates c-Jun-N-terminal kinase in T cells. J. Biol. Chem. 272, 25190–25194 (1997).

    CAS  PubMed  Google Scholar 

  18. Tan, K. et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene 204, 35–46 (1997).

    CAS  PubMed  Google Scholar 

  19. Gurney, A. et al. Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr. Biol. 9, 215–221 (1999).

    CAS  PubMed  Google Scholar 

  20. Marsters, S. et al. HVEM, a member of the TNF receptor family, interacts with members of the TRAF family and activates the transcription factors NF-kB and AP-1. J. Biol. Chem. 272, 14029–14032 (1997).

    CAS  PubMed  Google Scholar 

  21. Chinnaiyan, A. M. et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274, 990–992 (1996).

    CAS  PubMed  Google Scholar 

  22. Marsters, S. et al. Apo3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-κB. Curr. Biol. 6, 1669–1676 (1996).

    CAS  PubMed  Google Scholar 

  23. Pan, G. et al. Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett. 431, 351–356 (1998).

    CAS  PubMed  Google Scholar 

  24. Gray, D. Recruitment of virgin B cells into an immune response is restricted to activation outside lymphoid follicles. Immunology 65, 73–79 (1988).

    CAS  PubMed  Google Scholar 

  25. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    CAS  PubMed  Google Scholar 

  26. Matsumoto, M. et al. Affinity maturation without germinal centres in lymphotoxin-alpha-deficient mice. Nature 382, 462–466 (1996).

    CAS  PubMed  Google Scholar 

  27. Kato, J. et al. Affinity maturation in Lyn kinase-deficient mice with defective germinal center formation. J. Immunol. 160, 4788–4795 (1998).

    CAS  PubMed  Google Scholar 

  28. Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M. H. & Pfeffer, K. The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70 (1998).

    CAS  PubMed  Google Scholar 

  29. Foy, T. M., Aruffo, A., Bajorath, J., Buhlmann, J. E. & Noelle, R. J. Immune regulation by CD40 and its ligand GP39. Annu. Rev. Immunol. 14, 591–617 (1996).

    CAS  PubMed  Google Scholar 

  30. Han, S. et al. Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J. Immunol. 155, 556–567 (1995).

    CAS  PubMed  Google Scholar 

  31. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    CAS  PubMed  Google Scholar 

  32. Lane, P. et al. B cell function in mice transgenic for mCTLA4-H gamma 1: lack of germinal centers correlated with poor affinity maturation and class switching despite normal priming of CD4+ T cells. J. Exp. Med. 179, 819–830 (1994).

    CAS  PubMed  Google Scholar 

  33. Durie, F. H., Foy, T. M., Masters, S. R., Laman, J. D. & Noelle, R. J. The role of CD40 in the regulation of humoral and cell-mediated immunity. Immunol. Today 15, 406–411 (1994).

    CAS  PubMed  Google Scholar 

  34. Hathcock, K. S. et al. Identification of an alternative CTLA-4 ligand costimulatory for T cell activation [see comments]. Science 262, 905–907 (1993).

    CAS  PubMed  Google Scholar 

  35. Linsley, P. S. et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 257, 792–795 (1992).

    CAS  PubMed  Google Scholar 

  36. Renshaw, B.R. et al. Humoral immune responses in CD40 ligand-deficient mice. J. Exp. Med. 180, 1889–1900 (1994).

    CAS  PubMed  Google Scholar 

  37. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).

    CAS  PubMed  Google Scholar 

  38. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    CAS  PubMed  Google Scholar 

  39. Foy, T.M. et al. gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J. Exp. Med. 180, 157–163 (1994).

    CAS  PubMed  Google Scholar 

  40. Callard, R. E., Armitage, R. J., Fanslow, W. C. & Spriggs, M.K. CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol. Today 14, 559–564 (1993).

    CAS  PubMed  Google Scholar 

  41. Allen, R. C. et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259, 990–993 (1993).

    CAS  PubMed  Google Scholar 

  42. Aruffo, A. et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72, 291–300 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Laura Closkey, Tina Etchevery, Robert Pitti, Mark Nagel, Phil Haas for help with recombinant protein expression and purification, James Lee for cDNA libraries, Wyne Lee for help with animal studies, and Genentech's DNA sequencing and DNA synthesis labs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avi Ashkenazi or Vishva M. Dixit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, M., Marsters, S., Grewal, I. et al. Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nat Immunol 1, 37–41 (2000). https://doi.org/10.1038/76889

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing