Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Requirement for IRF-1 in the microenvironment supporting development of natural killer cells

An Erratum to this article was published on 23 April 1998

Abstract

Natural killer (NK) cells are critical for both innate and adaptive immunity1,2. The development of NK cells requires interactions between their progenitors and the bone-marrow microenvironment3,4,5,6; however, little is known about the molecular nature of such interactions. Mice that do not express the transcription factor interferon-regulatory factor-1 (IRF-1; such mice are IRF-1−/− mice) have been shown to exhibit a severe NK-cell deficiency7,8. Here we demonstrate that the lack of IRF-1 affects the radiation-resistant cells that constitute the microenvironment required for NK-cell development, but not the NK-cell progenitors themselves. We also show that IRF-1−/− bone-marrow cells can generate functional NK cells whencultured with the cytokine interleukin-15 (9-12) and that the interleukin-15 gene is transcriptionally regulated by IRF-1. These results reveal, for the first time, a molecular mechanism by which the bone-marrow microenvironment supports NK-cell development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of NK cells from bone-marrow cells upon transfer into irradiated wild-type (WT) mice.
Figure 2: Inability of irradiated IRF-1−/− mice to support NK-cell development from wild-type bone-marrow cells.
Figure 3: In vitro compensation of IRF-1 deficiency by IL-15.
Figure 4: IRF-1 regulates the expression of the IL-15 gene.

Similar content being viewed by others

References

  1. Trinchieri, G. Biology of natural killer cells. Adv. Immunol. 47, 187–376 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scott, P. & Trinchieri, G. The role of natural killer cells in host–parasite interactions. Curr. Opin. Immunol. 7, 34–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Haller, O. & Wigzell, H. Suppression of natural killer cell activity with radioactive strontium: effector cells are marrow dependent. J. Immunol. 118, 1503–1506 (1977).

    CAS  PubMed  Google Scholar 

  4. Seaman, W. E., Gindhart, T. D., Greenspan, J. S., Blackman, M. A. & Talal, N. Natural killer cells, bone, and the bone marrow: studies in estrogen-treated mice and in congenitally osteopetrotic (mi/mi) mice. J. Immunol. 122, 2541–2547 (1979).

    CAS  PubMed  Google Scholar 

  5. Kumar, V., Ben-Ezra, J., Bennett, M. & Sonnenfeld, G. Natural killer cells in mice treated with 89strontium: normal target-binding cell numbers but inability to kill even after interferon administration. J. Immunol. 123, 1832–1838 (1979).

    CAS  PubMed  Google Scholar 

  6. Hackett, J. J, Bennett, M. & Kumar, V. Origin and differentiation of natural killer cells. I. Characteristics of a transplantable NK cell precursor. J. Immunol. 134, 3731–3738 (1985).

    PubMed  Google Scholar 

  7. Duncan, G. S., Mittrücker, H.-W., Kägi, D., Matsuyama, T. & Mak, T. W. The transcription factor interferon regulatory factor-1 is essential for natural killer cell function in vivo. J. Exp. Med. 184, 2043–2048 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Taki, S. et al. Multistage regulation of Th1-type immune responses by the transcription factor IRF-1. Immunity 6, 673–679 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Giri, J. G. et al. Utilization of the β and γ chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 13, 2822–2830 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grabstein, K. H. et al. Cloning of a T cell growth factor that interacts with the β chain of the interleukin-2 receptor. Science 264, 965–968 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Carson, W. E. et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J. Exp. Med. 180, 1395–1403 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Tagaya, Y., Bamford, R. N., DeFilippis, A. P. & Waldmann, T. A. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity 4, 329–336 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Matsuyama, T. et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75, 83–97 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka, T. et al. Selective long-term elimination of natural killer cells in vivo by an anti-interleukin 2 receptor β chain monoclonal antibody in mice. J. Exp. Med. 178, 1103–1107 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Rolink, A. et al. Asubpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med. 83, 187–194 (1996).

    Article  Google Scholar 

  16. DiSanto, J. P., Muller, W., Guy-Grand, D., Fischer, A. & Rajewsky, K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor γ chain. Proc. Natl Acad. Sci. USA 92, 377–381 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohbo, K. et al. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor γ chain. Blood 87, 956–967 (1996).

    CAS  PubMed  Google Scholar 

  18. Suzuki, H., Duncan, G. S., Takimoto, H. & Mak, T. W. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor β chain. J. Exp. Med. 185, 499–505 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DiSanto, J. P. Shared receptors, distinct functions. Curr. Biol. 7, R424–R426 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Mrozek, E., Anderson, P. & Caligiuri, M. A. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 87, 2632–2640 (1996).

    CAS  PubMed  Google Scholar 

  21. Puzanov, I. J., Bennett, M. & Kumar, V. IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells. J. Immunol. 157, 4282–4285 (1996).

    CAS  PubMed  Google Scholar 

  22. Anderson, D. M. et al. Chromosomal assignment and genomic structure of IL-15. Genomics 25, 701–706 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka, N., Kawakami, T. & Taniguchi, T. Recognition DNA sequences of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. Mol. Cell. Biol. 13, 4531–4538 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bamford, R. N., Battiata, A. P., Burton, J. D., Sharma, H. & Waldmann, T. A. Interleukin (IL) 15/IL-T production by the adult T-cell leukemia cell line HuT-102 is associated with a human T-cell lymphotrophic virus type I region/IL-15 fusion message that lacks many upstream AUGs that normally attenuates IL-15 mRNA translation. Proc. Natl Acad. Sci. USA 93, 2897–2902 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taniguchi, T., Lamphier, M. S. & Tanaka, N. IRF-1: the transcription factor linking the interferon response and oncogenesis. Biochim. Biophys. Acta 1333, M9–M17 (1997).

    CAS  PubMed  Google Scholar 

  26. Dalton, D. K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1742 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Rodewald, H. R. et al. Apopulation of early fetal thymocytes expressing FcγRII/III contains precursors of T lymphocytes and natural killer cells. Cell 69, 139–150 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Tan, R. S., Taniguchi, T. & Harada, H. Identification of the lysyl oxidase gene as target of the antioncogenic transcription factor, IRF-1, and its possible role in tumor supression. Cancer Res. 56, 2417–2421 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Tanaka, M. Sato and R. Perlmutter for discussion and M. S. Lamphier for critically reading the manuscript. This work was supported by the Japan Society for the Promotion of Sicnece Research for the Future Program, by a special grant for Advanced Research on Cancer from the Ministry of Education, Science and Culture of Japan, and by the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Taki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogasawara, K., Hida, S., Azimi, N. et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391, 700–703 (1998). https://doi.org/10.1038/35636

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35636

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing