Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Filamins as integrators of cell mechanics and signalling

Key Points

  • Molecules that crosslink actin filaments into particular architectures are important components of cell structure and movement. Filamins are one of the first of such components recognized and are among the most important.

  • Filamins are extended dimers composed of subunits that contain characteristic β-pleated sheet repeats. Vertebrate filamins have amino-terminal actin-binding domains and self-associate at the carboxyl termini of their subunits.

  • The main human filamin (filamin A) is encoded on the X chromosome. A second filamin gene (filamin B) is encoded on chromosome 3 and a muscle-specific filamin gene (filamin C) is encoded on chromosome 7.

  • So far two filamin genes have been recognized in Drosophila. Dictyostelium amoebae have only one filamin species which is truncated compared with vertebrate and Drosophila filamins.

  • Filamins cause actin filaments to branch with high angles leading efficiently to the formation of actin gels in vitro. The filamins reside at branches between orthogonally intersecting filaments in the peripheral cytoplasm of cells.

  • Filamins also bind over 20 diverse cellular proteins, including membrane receptors and intracellular signalling macromolecules.

  • Cells missing the main filamins have defects in surface stability and locomotion and in some of the functions ascribed to the filamin binding partners. A mutation in the filamin A gene is lethal for males and the cause of periventricular heterotopia in females chimeric for the mutation.

Abstract

Filamins are large actin-binding proteins that stabilize delicate three-dimensional actin webs and link them to cellular membranes. They integrate cellular architectural and signalling functions and are essential for fetal development and cell locomotion. Here, we describe the history, structure and function of this group of proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of human FLNa.
Figure 2: Schematic subunit structures of some filamins.
Figure 3: Electron micrographs showing crosslinked complexes of actin filaments.
Figure 4: Electron micrograph of the actin cytoskeleton at the periphery of a human blood platelet.
Figure 5: Possible organization of FLNa at the surface of a human blood platelet.

Similar content being viewed by others

References

  1. Hartwig, J. & Stossel, T. Isolation and properties of actin, myosin, and a new actin-binding protein in rabbit alveolar macrophages. J. Biol. Chem. 250, 5696?5705 (1975).

    CAS  PubMed  Google Scholar 

  2. Stossel, T. P. & Hartwig, J. H. Interactions of actin, myosin and an actin-binding protein of rabbit alveolar macrophages. Macrophage myosin Mg2+-adenosine triphosphatase requires a cofactor for activation by actin. J. Biol. Chem. 250, 5706? 5712 (1975).

    CAS  PubMed  Google Scholar 

  3. Wang, K., Ash, J. F. & Singer, S. J. Filamin, a new high-molecular weight protein found in smooth muscle and non-muscle cells. Proc. Natl Acad. Sci. USA. 72, 4483?4486 ( 1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shizuta, Y., Shizuta, H., Gallo, M., Davies, P. & Pastan, I. Purification and properties of filamin, an actin-binding protein from chicken gizzard. J. Biol. Chem. 251, 6562?6567 (1976).

    CAS  PubMed  Google Scholar 

  5. Wallach, D., Davies, P. J. A. & Pastan, I. Purification of mammalian filamin. Similarity to high molecular weight actin-binding protein in macrophages, platelets, fibroblasts and other tissues. J. Biol. Chem. 253, 3328 ?3335 (1978).

    CAS  Google Scholar 

  6. Bechtel, P. J. Identification of a high molecular weight actin-binding protein in skeletal muscle. J. Biol. Chem. 254, 1755? 1758 (1979).

    CAS  PubMed  Google Scholar 

  7. Condeelis, J., Salisbury, J. & Fujiwara, K. A new protein that gels F actin in the cell cortex of Dictyostelium discoideum. Nature 292, 161?163 (1981).

    Article  CAS  Google Scholar 

  8. Condeelis, J., Geosits, J. & Vahey, M. Isolation of a new actin binding protein from Dictyostelium . Cell Motility 2, 273? 285 (1982).

    Article  CAS  Google Scholar 

  9. Vargas, M., Sansonetti, P. & Guillén, N. Identification and cellular localization of the actin-binding protein ABP-120 from Entamoeba histolytica. Mol. Microbiol. 22, 849?857 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  10. Noegel, A., Rapp, S., Lottspeich, F., Schleicher, M. & Stewart, M. The Dictyostelium gelation factor shares a putative actin binding site with α-actinins and dystrophin and also has a rod domain containing six 100-residue motifs that appear to have a cross-beta conformation. J. Cell Biol. 109, 607? 618 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Li, M. -G. et al. Filamin is required for ring canal assembly and actin organization during Drosophila oogenesis. J. Cell Biol. 146 , 1061?1073 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sokol, N. & Cooley, L. Drosophila filamin encoded by the cheerio locus is a component of ovarian ring canals. Curr. Biol. 9, 1221?1230 (1999).Introduction to Drosophila oocyte development and overview of filamins in Drosophila.

    Article  CAS  PubMed  Google Scholar 

  13. Weihing, R. R. The filamins: properties and functions. Can. J. Biochem. Cell Biol. 63, 397?413 ( 1985).

    Article  CAS  PubMed  Google Scholar 

  14. Hartwig, J. in Protein Profile (ed. Sheterline, P.) 711?778 (Academic, London, 1994).

    Google Scholar 

  15. Lebart, M. -C. et al. Characterization of the actin binding site on smooth muscle filamin. J. Biol. Chem. 269, 4279? 4284 (1994).

    CAS  PubMed  Google Scholar 

  16. Gorlin, J. et al. Human endothelial actin-binding protein (ABP, nonmuscle filamin): a molecular leaf spring. J. Cell Biol. 111, 1089?1105 (1990). This paper describes the cloning and structure of FLNa.

    Article  CAS  PubMed  Google Scholar 

  17. Taylor, D. & Condeelis, J. Cytoplasmic structure and contractility in amoeboid cells. Int. Rev. Cytol. 56, 57?144 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Brotschi, E. A., Hartwig, J. H. & Stossel, T. P. The gelation of actin by actin-binding protein. J. Biol. Chem. 253, 8988?8993 (1978).

    CAS  PubMed  Google Scholar 

  19. Bennett, J., Zaner, K. & Stossel, T. Isolation and some properties of macrophage α-actinin. Evidence that it is not an actin gelling protein. Biochemistry 23, 5081?5086 ( 1984).

    Article  CAS  PubMed  Google Scholar 

  20. Ito, T., Suzuki, A. & Stossel, T. Regulation of water flow by actin-binding protein-induced actin gelation. Biophys. J. 61, 1301? 1305 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldmann, W. & Isenberg, G. Analysis of filamin and α-actinin binding to actin by the stopped flow method. FEBS Lett. 336, 408?410 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Matsudaira, P. Actin crosslinking proteins at the leading edge. Semin. Cell Biol. 5, 165?174 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  23. Honda, M., Takiguchi, K., Ishikawa, S. & Hotani, H. Morphogenesis of liposomes encapsulating actin depends on the type of actin-crosslinking . J. Mol. Biol. 287, 293? 300 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Stossel, T. & Hartwig, J. Interactions of actin, myosin and an actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J. Cell Biol. 68, 602?614 (1976).

    Article  CAS  PubMed  Google Scholar 

  25. Hartwig, J. H., Tyler, J. & Stossel, T. P. Actin-binding protein promotes the bipolar and perpendicular branching of actin filaments. J. Cell Biol. 87, 841?848 (1980).

    Article  CAS  PubMed  Google Scholar 

  26. Niederman, R., Amrein, P. & Hartwig, J. H. The three dimensional structure of actin filaments in solution and an actin gel made with actin-binding protein. J. Cell Biol. 96, 1400?1413 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Wolosowick, J. & Condeelis, J. Fine structure of gels prepared from an actin-binding protein: comparison to cytoplasmic extracts and cortical cytoplasm in ameboid cells of Dictyostelium discoideum . J. Cell Biochem. 30, 227? 243 (1986).

    Article  Google Scholar 

  28. Weihing, R. R. Actin-binding and dimerization domains of HeLa cell filamin. Biochemistry 27, 1865?1869 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  29. Bresnick, A., Warren, V. & Condeelis, J. Identification of a short sequence essential for actin binding by Dictyostelium ABP-120. J. Biol. Chem. 265, 9236?9240 (1990).

    CAS  PubMed  Google Scholar 

  30. Bresnick, A., Janmey, P. & Condeelis, J. Evidence that a 27-residue sequence is the actin-binding site of ABP-120. J. Biol. Chem. 266, 12989 ?12993 (1991).

    CAS  PubMed  Google Scholar 

  31. Hartwig, J. H. & Stossel, T. P. The structure of actin-binding protein molecules in solution and interacting with actin filaments. J. Mol. Biol. 145, 563? 581 (1981).

    Article  CAS  PubMed  Google Scholar 

  32. Schliwa, M. & Van Blerkom, J. Structural interactions of cytoskeletal components. J. Cell Biol. 90, 225? 235 (1981).

    Article  Google Scholar 

  33. Hartwig, J. H. & Shevlin, P. The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages. J. Cell Biol. 103, 1007?1020 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Hartwig, J. H., Chambers, K. A. & Stossel, T. P. Assocation of gelsolin with actin filaments and cell membranes of macrophages and platelets. J. Cell Biol. 108, 467?480 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Hartwig, J. Mechanisms of actin rearrangements mediating platelet activation. J. Cell Biol. 118, 1421?1442 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Bailly, M. et al. Relationship between Arp2/3 complex and the barbed ends of actin filaments at the leading edge of carcinoma cells after epidermal growth factor stimulation. J. Cell Biol. 145, 331 ?345 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Svitkina, T. & Borisy, G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009?1026 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Langanger, G. et al. Ultrastructural localization of α-actinin and filamin in cultured cells with the immunogold staining (IGS) method. J. Cell Biol. 99, 1324?1334 (1984).

    Article  CAS  PubMed  Google Scholar 

  39. Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404 , 1007?1011 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. & Carlier, M. -F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature Cell Biol. 2, 385?391 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  41. Mullins, R., Heuser, M. & Pollard, T. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181?6186 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mullins, R., Kelleher, J., Xu, J. & Pollard, T. Arp2/3 complex from Acanthamoeba binds profilin and crosslinks actin filaments. Mol. Biol. Cell 9, 841?852 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Janmey, P. A., Hvidt, S., Lamb, J. & Stossel, T. P. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature 345, 89?92 ( 1990).This paper describes the rheological background of filamin?actin gels.

    Article  CAS  PubMed  Google Scholar 

  44. Janssen, K.-P. et al. Viscoelastic properties of F-actin solutions in the presence of normal and mutated actin-binding proteins. Arch. Biochem. Biophys. 325, 183?189 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  45. Bishop, A. & Hall, A. Rho GTPases and their effector proteins . Biochem. J. 348, 241? 255 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marti, A. et al. ABP-280 binds the SAPK activator SEK-1 and is required for TNFα activation of SAPK in melanoma cells. J. Biol. Chem. 272, 2620?2628 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. & Stossel, T. The small GTPase RalA targets filamin to induce filopodia . Proc. Natl Acad. Sci. USA 96, 2122? 2128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bellanger, J. -M. et al. The Rac1- and RhoG-activating domain of the bifunctional guanine nucleotide exchange factor Trio targets filamin to remodel cytoskeletal actin . Nature Cell Biol. 2, 888? 892 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Fisher, P. et al. Photosensory and thermosensory responses in Dictyostelium slugs are specifically impaired by absence of the F-actin crosslinking gelation factor (ABP-120). Curr. Biol. 7, 889?892 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Glogauer, M. et al. The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J. Biol. Chem. 273, 1689 ?1698 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Wallach, D., Davies, P. J. A. & Pastan, I. Cyclic AMP-dependent phosphorylation of filamin in mammalian smooth muscle. J. Biol. Chem. 253, 4739? 4745 (1978).

    CAS  PubMed  Google Scholar 

  52. Chen, M. & Stracher, A. In situ phosphorylation of platelet actin-binding protein by cAMP-dependent protein kinase stabilizes it against proteolysis by calpain. J. Biol. Chem. 264 , 14282?14289 (1989).

    CAS  PubMed  Google Scholar 

  53. Kawamoto, S. & Hidaka, H. Ca2+-activated phospholipid-dependent protein kinase catalyses the phosphorylation of actin-binding proteins. Biochem. Biophys. Res. Commun. 118, 736? 742 (1984).

    Article  CAS  PubMed  Google Scholar 

  54. Jay, D., García, E., Lara, J., Medina, M. & de la Cruz Ibarra, M. Determination of a cAMP-dependent protein kinase phosphorylation site in the C-terminal region of human endothelial actin-binding protein. Arch. Biochem. Biophys. 377, 80?84 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Ohta, Y. & Hartwig, J. Phosphorylation of actin-binding protein 280 by growth factors is mediated by p90 ribosomal protein S6 kinase . J. Biol. Chem. 271, 11858? 11864 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Ohta, Y. & Hartwig, J. Actin filament crosslinking by chicken gizzard filamin is regulated by phosphorylation in vitro. Biochemistry. 34, 6745?6754 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Cox, D. et al. Targeted disruption of the ABP-120 gene leads to cells with altered motility. J. Cell Biol. 116, 943? 955 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Cox, D., Wessels, D., Soll, D., Hartwig, J. & Condeelis, J. Re-expression of ABP-120 rescues cytoskeletal, motility, and phagocytosis defects of ABP-120-Dictyostelium mutants. Mol. Biol. Cell 7, 803?823 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ponte, E., Rivero, F., Fechheimer, M., Noegel, A. & Bozzaro, S. Severe developmental defects in Dictyostelium null mutants for actin-binding proteins. Mech. Dev. 91, 153?161 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  60. Cox, D., Ridsdale, J., Condeelis, J. & Hartwig, J. Genetic deletion of ABP-120 alters the three-dimensional organization of actin filaments in Dictyostelium pseudopods. J. Cell Biol. 128, 819?835 (1995). Description of filamin-deficient Dictyostelium amoebae.

    Article  CAS  PubMed  Google Scholar 

  61. Rivero, F. et al. The role of the cortical cytoskeleton: F-actin crosslinking proteins protect against osmotic stress, ensure cell size, cell shape and motility, and contribute to phagocytosis and development. J. Cell Sci. 109, 2679?2691 ( 1996).

    CAS  PubMed  Google Scholar 

  62. Rivero, F., Furukawa, R., Fechheimer, M. & Noegel, A. Three actin crosslinking proteins, the 34 kDa actin-bundling protein, α-actinin and gelation factor (ABP-120), have both unique and redundant roles in the growth and development of Dictyostelium. J. Cell Sci. 112, 2737?2751 (1999).

    CAS  PubMed  Google Scholar 

  63. Cunningham, C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255, 325? 327 (1992).Description of filamin-deficient melanoma cells and their rescue.

    Article  CAS  PubMed  Google Scholar 

  64. Dai, J. & Sheetz, M. Membrane tether formation from blebbing cells. Biophys. J. 77, 3363? 3370 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cunningham, C. Actin polymerization and intracellular solvent flow in cell surface blebbing . J. Cell Biol. 129, 1589? 1599 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Fox, J. et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21, 1315?1325 (1998). Description of the first human filamin mutation, periventricular heterotopia.

    Article  CAS  PubMed  Google Scholar 

  67. Robinson, D., Smith-Leiker, T., Sokol, N., Hudson, A. & Cooley, L. Formation of the Drosophila ovarian ring canal inner rim depends on cheerio. Genetics 145, 1063?1072 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ezzell, R. M., Kenney, D. M., Egan, S., Stossel, T. P. & Hartwig, J. H. Localization of the domain of actin-binding protein that binds to membrane glycoprotein Ib and actin in human platelets. J. Biol. Chem. 263, 13303?13309 (1988).

    CAS  PubMed  Google Scholar 

  69. Tyler, J. M., Anderson, J. M. & Branton, D. Structural comparison of several actin-binding molecules . J. Cell Biol. 85, 489? 495 (1980).

    Article  CAS  PubMed  Google Scholar 

  70. Fucini, P., Renner, C., Heberhold, C., Noegel, A. & Holak, T. The repeating segments of the F-actin crosslinking gelation factor (ABP-120) have an immunoglobulin-like fold. Nature Struct. Biol. 4, 223?230 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Fucini, P. et al. Molecular architecture of the rod domain of the Dictyostelium gelation factor (ABP-120). J. Mol. Biol. 291, 1017?1023 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. McCoy, A., Fucini, P., Noegel, A. & Stewart, M. Structural basis for dimerization of the Dictyostelium gelation factor (ABP120) rod . Nature Struct. Biol. 9, 836? 841 (1999).This paper presents the atomic structure of a Dictyostelium filamin self-association domain.

    Google Scholar 

  73. Hartwig, J. & DeSisto, M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J. Cell Biol. 112, 407 ?425 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Gorlin, J. et al. Actin-binding protein (ABP-280) filamin gene (FLN) maps telomeric to the color vision locus (R/CGP) and centromeric to G6PD in Xq28. Genomics 17, 496?498 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  75. Maestrini, E. et al. Mapping of two genes encoding isoforms of the actin-binding protein ABP-280, a dystrophin like protein, to Xq28 and to chromosome 7. Hum. Mol. Genet. 2, 761?766 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, W., Han, S., McKeel, D., Goate, A. & Wu, J. Interaction of presenilins with the filamin family of actin-binding proteins . J. Neurosci. 18, 914? 922 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takafuta, T., Wu, G., Murphy, G. & Shapiro, S. Human β-filamin is a new protein that interacts with the cytoplasmic tail of glycoprotein Ibα. J. Biol. Chem. 273, 17531? 17538 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Xu, W. -F, Xie, Z. -W, Chung, D. & Davie, E. A novel human actin-binding protein homologue that binds to platelet glycoprotein Ibα. Blood 92, 1268?1276 ( 1998).

    CAS  PubMed  Google Scholar 

  79. Bröcker, F. et al. Assignment of human filamin gene FLNB to human chromosome band 3p14. 3 and identification of YACs containing the complete FLNB transcribed region. Cytogenet. Cell Genet. 85, 267? 268 (1999).

    Article  PubMed  Google Scholar 

  80. Chakarova, C. et al. Genomic structure and fine mapping of the two human filamin gene paralogues FLNB and FLNC and comparative analysis of the filamin gene family. Hum. Genet. 107, 597? 611 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Barry, C. P., Xie, J., Lemmon, V. & Young, A. P. Molecular characterization of a multipromoter gene encoding a chicken filamin protein. J. Biol. Chem. 268, 25577?25586 (1993).

    CAS  PubMed  Google Scholar 

  82. Xie, Z., Wu, W., Davie, E. & Chung, D. Molecular cloning of human ABPL, an actin-binding protein homologue. Biochem. Biophys. Res. Commun. 251, 914?919 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. van der Ven, P., Obermann, W., Lemke, B., Gautel, M., Weber, K. & Fürst, D. Characterization of muscle filamin isoforms suggests a possible role of γ-filamin/ABP-L in sarcomeric Z-disc formation. Cell Motil. Cytoskeleton 45, 149?162 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. van der Ven, P. et al. Indications for a novel muscular dystrophy pathway: γ-filamin, the muscle-specific filamin isoform, interacts with myotilin. J. Cell Biol. 151, 235?247 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meyer, S. et al. Identification of the region in actin-binding protein that binds to the cytoplasmic domain of glycoprotein Ib. J. Biol. Chem. 272, 2914?2919 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Calderwood, D., Shattil, S. & Ginsberg, M. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275, 22607?22610 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Ott, I., Fischer, E., Miyagi, Y., Mueller, B. & Ruf, W. A role for tissue factor in cell adhesion and migration mediated by interaction with actin-binding protein 280. J. Cell Biol. 140, 1241?1253 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ohta, Y., Stossel, T. & Hartwig, J. Ligand-sensitive binding of actin-binding protein (ABP) to immunoglobulin G Fc receptor I(FcγR1, CD64). Cell. 67, 275?282 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, G. et al. Cytoskeletal protein ABP-280 directs the intracellular trafficking of furin and modulates proprotein processing in the endocytic pathway. J. Cell Biol. 139, 1719?1733 (1997).Good example of the identification and functional workup of a filamin?partner relationship.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thompson, T. et al. Filamin 2 (FLN2): a muscle-specific sarcoglycan interacting protein. J. Cell Biol. 148, 115? 126 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stahlhut, M. & van Deurs, B. Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol. Biol. Cell 11, 325?337 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schwartzman, A. et al. Endogenous presenilin 1 redistributes to the surface of lamellipodia upon adhesion of Jurkat cells to a collagen matrix. Proc. Natl Acad. Sci. USA 96, 7932?7937 (1999).

    Article  Google Scholar 

  93. Guo, Y., Zhang, S., Sokol, N., Cooley, L. & Boulianne, G. Physical and genetic interaction of filamin with presenilin in Drosophila. J. Cell Sci. 113, 3499?3508 (2000).

    CAS  PubMed  Google Scholar 

  94. Li, M., Bermak, C., Wang, Z. & Zhou, Q. Modulation of dopamine D2 receptor signaling by actin-binding protein (ABP-280). Mol. Pharmacol. 57, 446?452 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Browne, K., Johnstone, R., Jans, D. & Trapani, J. Filamin (280-kDa actin-binding protein) is a caspase substrate and is also cleaved directly by the cytotoxic T lymphocyte protease granzyme B during apoptosis. J. Biol. Chem. 275, 39262?39266 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Edwards, D., Towb, P. & Wasserman, S. An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators. Development 124, 3855?3864 ( 1997).

    CAS  PubMed  Google Scholar 

  97. Leonardi, A., Ellinger-Ziegelbauer, H., Franzoso, G., Brown, K. & Siebenlist, U. Physical and functional interaction of filamin (actin-binding protein-280) and tumor necrosis receptor-associated factor 2. J. Biol. Chem. 275, 271? 278 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Ozanne, D., Brady, M., Gaughan, L., Cook, S., Neal, D. & Robson, C. Androgen receptor nuclear translocation is faciliated by the F-actin crosslinking protein filamin . Mol. Endocrinol. 14, 1618? 1626 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Krief, S. et al. Identification and characterization of cvHsp. A novel human small stress protein selectively expressed in cardiovascular and insulin-sensitive tissues. J. Biol. Chem. 274, 36592? 36600 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Petrecca, K., Miller, D. & Shrier, A. Localization and enhanced current density of the Kv4. 2 potassium channel by interaction with the actin-binding protein filamin . J. Neurosci. 20, 8736? 8744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Some of the research reported in this review was supported by the NIH grants and by the Edwin S Webster Foundation (to T.P.S and J.H.H). We appreciate comments on this paper by Kuan Wang, NIAMS, NIH, who with S. John Singer was the first to purify avian gizzard filamin.

Author information

Authors and Affiliations

Authors

Additional information

Movie. Morphology of FLNa-repleted cells (left) derived from FLNa-null M2 cells (right). Filamin-expressing cells ruffle and begin to translocate, whereas M2 cells remain stationary and bleb.

Supplementary information

Related links

Related links

DATABASE LINKS

filamin

cheerio

β-spectrin

dystrophin

α-actinin

calponin

utrophin

Arp2/3 complex

Ral

Cdc42

RhoA

Rac1

Trio

β1 integrin

protein kinase A

protein kinase C

Ca2+/calmodulin-dependent protein kinase II

p90 ribosomal S6 kinase

human periventricular heterotopia

FURTHER INFORMATION

Stossel lab page

ENCYCLOPEDIA OF LIFE SCIENCES

Actin and actin filaments

Glossary

PHAGOCYTOSIS

Actin-dependent process, by which cells engulf external particulate material by extension and fusion of pseudopods.

OSMOTIC FLUID FLOW

The movement of fluid across semi-permeable membranes from lesser to greater solute concentrations.

HYDROSTATIC FLUID FLOW

The movement of fluid under mechanical pressure in the direction of least resistance.

MACROPHAGE

Any cell of the mononuclear phagocyte system that is characterized by its ability to phagocytose foreign particulate and colloidal material.

FIBROBLAST

Common cell type found in connective tissue in many parts of the body, which secretes an extracellular matrix rich in collagen and other macromolecules.

PARALOGUE

Gene products on opposite branches of a duplicated gene family. Orthologues are on the same branch (for example, FLNa, FLNb and FLNc). Paralogues and orthologues are homologues.

OVARIAN RING CANAL

In Drosophila, a single oocyte develops in egg chambers containing 15 nurse cells connected by intercellular bridges ? the ring canals.

GEL

A liquid becomes a gel when a 'giant molecule' occupies the entire liquid.

POINTED END

Defined by arrowhead appearance of myosin head fragments bound to the actin filaments.

LEADING EDGE

The thin margin of a lamellipodium spanning the area of the cell from the plasma membrane to about 1 μm back into the lamellipodium.

PLATELETS

The smallest blood cells, which are important in haemostasis and blood coagulation.

MELANOMA

Cancer derived from melanocytes, the cells that synthesize melanin pigments.

RHO FAMILY GTPASES

Ras-related GTPases involved in controlling the polymerization of actin.

DICTYOSTELIUM SLUGS

Aggregated form of Dictyostelium amoebae.

CALPAIN

Calcium-dependent cysteine proteases involved in signal transduction in a variety of cellular processes.

LAMELLA

Flat, sheet-like protrusions at the edge of the cell. A fan-shaped lamella is a prominent feature identifying the leading edge of a cell undergoing locomotion on a flat surface. Actin networks are the principal structures within these lamellae.

EPILEPTIC SEIZURE

Commonly known as fits, seizures are the result of uncontrolled bursts of neuronal activation in the brain that usually lead to repetitive motor activity, such as shaking of extremities. Epilepsy is the term applied to recurrent seizures. Anatomical malformations, tumours, scars, infection, inflammation, haemorrhage and metabolic derangements can cause seizures.

LATERAL VENTRICLES

Cavernous structures in the middle of the cerebrum that contain cerebrospinal fluid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stossel, T., Condeelis, J., Cooley, L. et al. Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2, 138–145 (2001). https://doi.org/10.1038/35052082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35052082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing