Skip to main content

Advertisement

Log in

Management of osteoporosis in older men

  • Review Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

As many as one out of three fragility fractures occur in older men and the outcome of major osteoporotic fractures, in particular hip fractures, is worse in men than in women. Osteoporosis in older men is thus an important threat to the quality of life of individual patients and a considerable burden for society. However, only a small minority of older men with high or very high fracture risk are receiving therapy. This does not need to be so as tools for fracture risk assessment are available and several drugs have been approved for treatment. Nevertheless, the evidence base for the management of osteoporosis in older men remains limited. This narrative review summarises the evidence for older men on the burden of osteoporosis, the pathophysiology of fragility fractures, the clinical presentation, diagnosis and risk assessment, the patient evaluation, and the non-pharmacological and pharmacological management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733. https://doi.org/10.1007/s00198-006-0172-4

    Article  CAS  PubMed  Google Scholar 

  2. Burge R, Dawson-Hughes B, Solomon DH et al (2007) Incidence and economic burden of osteoporosis-related fractures in the United States. J Bone Miner Res 22:465–475

    Article  PubMed  Google Scholar 

  3. Hernlund E, Svedbom A, Ivergard M et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136. https://doi.org/10.1007/s11657-013-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kanis JA, Johnell O, Oden A et al (2004) Epidemiology of osteoporosis and fracture in men. Calcif Tissue Int 75:90–99

    Article  CAS  PubMed  Google Scholar 

  5. Hopkins RB, Pullenayegum E, Goeree R et al (2012) Estimation of the lifetime risk of hip fracture for women and men in Canada. Osteoporos Int 23:921–927

    Article  CAS  PubMed  Google Scholar 

  6. Shah A, Prieto-Alhambra D, Hawley S et al (2017) Geographic variation in secondary fracture prevention after a hip fracture during 1999–2013: a UK study. Osteoporos Int 28:169–178

    Article  CAS  PubMed  Google Scholar 

  7. Bliuc D, Nguyen ND, Milch VE et al (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521

    Article  CAS  PubMed  Google Scholar 

  8. Haentjens P, Magaziner J, Colon-Emeric CS et al (2010) Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 152:380–439

    Article  PubMed  PubMed Central  Google Scholar 

  9. Holt G, Smith R, Duncan K et al (2008) Gender differences in epidemiology and outcome after hip fracture: evidence from the Scottish hip fracture audit. J Bone Jt Surg 90B:480–483. https://doi.org/10.1302/0301-620X.90B4.20264

    Article  Google Scholar 

  10. Cnter JR, Nguyen TV, Schneider D et al (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882. https://doi.org/10.1016/S0140-6736(98)09075-8

    Article  Google Scholar 

  11. Kanis JA, Oden A, McCloskey EV et al (2012) A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 23:2239–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shin M, Zmuda J, Barrett-Connor E et al (2014) Race/ethnicdifferences in associations between bone mineraldensity and fracture history in older men. Osteoporos Int 25:837–845

    Article  PubMed  Google Scholar 

  13. Curtis JR, McClure LA, Delzell E et al (2009) (2009) Population based fracture risk assessment and osteoporosis treatment disparities by race and gender. J Gen Intern Med 24:956–962

    Article  PubMed  PubMed Central  Google Scholar 

  14. Center JR, Bliuc D, Nguyen TV et al (2007) Risk of subsequent fracture after low-trauma fracture in men and women. JAMA 297:387–394

    Article  CAS  PubMed  Google Scholar 

  15. Papaioannou A, Kennedy CC, Ionnadis G et al (2008) The osteoporosis care gap in men with fragility fractures: the Canadian Multicentre Osteoporosis Study. Osteoporos Int 19:581–587

    Article  CAS  PubMed  Google Scholar 

  16. Narla RR, Hirano LA, Lo SHY et al (2019) Suboptimal osteoporosis evaluation and treatment in older men with and without additional high-risk factors for fractures. J Investig Med 67:743–749. https://doi.org/10.1136/jim-2018-000907

    Article  PubMed  Google Scholar 

  17. Kanis JA, Bianchi G, Bilezikian JP et al (2011) Towards a diagnostic and therapeutic consensus in male osteoporosis. Osteoporos Int 22:2789–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Riggs BL, Melton LJ 3rd, Robb RA et al (2004) Population-based study of age and sex differences in bonevolumetric density, size, geometry, and structure at different skeletalsites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  19. Riggs BL, Melton LJ III, Robb RA et al (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23:208–214

    Google Scholar 

  20. Szulc P, Delmas P (2007) Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition. The prospective MINOS study. Osteoporos Int 18:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cawthon P, Ewing S, McCulloch C et al (2009) Loss of hip BMD in older men: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res 24:1728–1735

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bauer D, Garnero P, Harrison S et al (2009) Biochemical markers of bone turnover, hip bone loss, and fracture in older men: the MrOS study. J Bone Miner Res 24:2032–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cauley JA, Burghardt AJ, Harrison SL et al (2018) Accelerated bone loss in older men: effects on bone microarchitecture and strength. J Bone Miner Res 33:1859–1869

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen TV, Center JR, Eisman JA (2005) Femoral neck bone loss predictsfracture risk independent of baseline BMD. J Bone Miner Res 20(7):1195–1201

    Article  PubMed  Google Scholar 

  25. Cawthon PM, Ewing SK, Mackey DC et al (2005) (2012) Change in hip bone mineral density and risk of subsequent fractures in older men. J Bone Miner Res 27:2179–2188

    Article  Google Scholar 

  26. Zebaze R, Ghasem-Zadeh A, Bohte A et al (2010) Intracortical remodeling and porosity: rational targets for fracture prevention. Lancet 375:1729–1736

    Article  PubMed  Google Scholar 

  27. Tinetti M, Speechley M, Ginter S (1988) Risk factors for falls among elderly persons living in the community. N Engl J Med 319:1701–1707

    Article  CAS  PubMed  Google Scholar 

  28. Orwoll ES, Fino NF, Gill TM et al (2019) The relationships between physical performance, activity levels, and falls in older men. J Gerontol A Biol Sci Med Sci 74:1475–1485

    Article  PubMed  Google Scholar 

  29. Cawthon PM, Shahnazari M, Orwoll ES (2016) Osteoporosis in men; findings from the osteoporotic fractures in men study (MrOS). Ther Adv Musculoskel Dis 8:15–27

    Article  Google Scholar 

  30. Cawthon PM, Orwoll ES, Peters KE et al (2019) Strong relation between muscle mass determined by D3-creatine dilution, physical performance, and incidence of falls and mobility limitations in a prospective cohort of older men. J Gerontol A Biol Sci Med Sci 74:844–852

    Article  PubMed  Google Scholar 

  31. Chan B, Marshall L, Winters K et al (2007) Incident fall riskand physical activity and physical performance amongolder men: the osteoporotic fractures in men study. Am J Epidemiol 165:696–703

    Article  PubMed  Google Scholar 

  32. Landi F, Liperoti R, Russo A et al (2012) Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr 31:652–658

    Article  PubMed  Google Scholar 

  33. Ensrud K, Ewing S, Cawthon P et al (2009) A comparison of frailty indexes for the prediction of falls, disability, fractures, and mortality in older men. J Am Geriatr Soc 57:492–498

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stone K, Blackwell T, Ancoli-Israel S et al (2014) Sleep disturbances and risk of falls in older community dwelling men: the outcomes of sleep disorders in older men (MrOS Sleep) study. J Am Geriatr Soc 62:299–305

    Article  PubMed  PubMed Central  Google Scholar 

  35. Parsons J, Mougey J, Lambert L et al (2009) Lower urinary tract symptoms increase the risk of falls in older men. BJU Int 104:63–68

    Article  PubMed  PubMed Central  Google Scholar 

  36. Noguchi N, Chan L, Cumming RG et al (2016) Lower urinary tract symptoms and falls in community dwelling older men: the concord health and ageing in men project. J Urol 196:1694–1699. https://doi.org/10.1016/j.juro.2016.06.085

    Article  PubMed  Google Scholar 

  37. Rochira V, Antonio L, Vanderschueren D (2018) EAA clinical guideline on management of bone health in the andrological outpatient clinic. Andrology 6:272–285

    Article  CAS  PubMed  Google Scholar 

  38. Mittan D, Lee S, Miller E et al (2002) Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J Clin Endocrinol Metab 87:3656–3661

    Article  CAS  PubMed  Google Scholar 

  39. Shahinian VB, Kuo YF, Freeman JL et al (2005) Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med 352:154–164

    Article  CAS  PubMed  Google Scholar 

  40. Kaufman JM, Lapauw B, Mahmoud A et al (2019) Aging and the male reproductive system. Endocr Rev 40:906–972

    Article  PubMed  Google Scholar 

  41. Vanderschueren D, Laurent MR, Claessens F et al (2014) Sex steroid actions in male bone. Endocr Rev 35:906–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khosla S, Melton LJ III, Atkinson EJ et al (2001) Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 86:3555–3561

    Article  CAS  PubMed  Google Scholar 

  43. Gennari L, Merlotti D, Martini G et al (2003) Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J Clin Endocrinol Metab 88:5327–5333

    Article  CAS  PubMed  Google Scholar 

  44. Van Pottelbergh I, Goemaere S, Kaufman JM (2003) Bioavailable estradiol and an aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age. J Clin Endocrinol Metab 88:3075–3081

    Article  PubMed  Google Scholar 

  45. Cauley JA, Ewing SK, Taylor BC et al (2010) Sex steroid hormones in older men: longitudinal associations with 4.5-year change in hip bone mineral density—the osteoporotic fractures in men study. J Clin Endocrinol Metab 95:4314–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Woo J, Kwok T, Leung JC et al (2012) Sex steroids and bone health in older Chinese men. Osteoporos Int 23:1553–1562

    Article  CAS  PubMed  Google Scholar 

  47. Bjørnerem A, Emaus N, Berntsen GK et al (2007) Circulating sex steroids, sex hormone-binding globulin, and longitudinal changes in forearm bone mineral density in postmenopausal women and men: the Tromsø study. Calcif Tissue Int 81:65–72

    Article  PubMed  Google Scholar 

  48. Amin S, Zhang Y, Felson DT et al (2006) Estradiol, testosterone, and the risk for hip fractures in elderly men from the Framingham Study. Am J Med 119:426–433

    Article  CAS  PubMed  Google Scholar 

  49. Roddam AW, Appleby P, Neale R et al (2009) Association between endogenous plasma hormone concentrations and fracture risk in men and women: the EPIC-Oxford prospective cohort study. J Bone Miner Metab 27:485–493

    Article  CAS  PubMed  Google Scholar 

  50. Mellström D, Vandenput L, Mallmin H et al (2008) Older men with low serum estradiol and high serumSHBG have an increased risk of fractures. J Bone Miner Res 23:1552–1560

    Article  PubMed  Google Scholar 

  51. LeBlanc ES, Nielson CM, Marshall LM et al (2009) The effects of serum testosterone,estradiol, and sex hormone binding globulinlevels on fracture risk in older men. J Clin Endocrinol Metab 94:3337–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vandenput L, Mellström D, Kindmark A et al (2016) High serum SHBG predicts incident vertebral fractures in elderly men. J Bone Miner Res 31:683–689

    Article  CAS  PubMed  Google Scholar 

  53. Cawthon PM, Schousboe JT, Harrison SL et al (2016) Sex hormones, sex hormone bindingglobulin, and vertebral fractures inolder men. Bone 84:271–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bjørnerem A, Ahmed LA, Joakimsen RM et al (2007) A prospective study of sex steroids, sex hormone-binding globulin, and non-vertebral fractures in women and men: the Tromso Study. Eur J Endocrinol 157:119–125

    Article  PubMed  Google Scholar 

  55. Meier C, Nguyen TV, Handelsman DJ et al (2008) Endogenous sex hormones and incident fracture risk in older men: the Dubbo osteoporosis epidemiology study. Arch Intern Med 168:47–54

    Article  CAS  PubMed  Google Scholar 

  56. Yeap BB, Alfonso H, Chubb SAP et al (2020) U-shaped association of plasma testosterone, and no association of plasma estradiol, with incidence of fractures in men. J Clin Endocrinol Metab 105:1489–1500

    Article  Google Scholar 

  57. Orwoll E, Lambert LC, Marshall LM et al (2006) Endogenous testosterone levels, physical performance,and fall risk in older men. Arch Intern Med 166:2124–2131

    Article  PubMed  Google Scholar 

  58. Vandenput L, Mellstrom D, Laughlin GA et al (2017) Low testosterone, but not estradiol, is associatedwith incident falls in older men: the InternationalMrOS Study. J Bone Miner Res 32:1174–1181

    Article  CAS  PubMed  Google Scholar 

  59. Orwoll ES, Lapidus J, Wang PY et al (2017) The limited clinical utility oftestosterone, estradiol and sex hormone bindingglobulin measurements in the prediction of fracturerisk and bone loss in older men. J Bone Miner Res 32:633–664

    Article  CAS  PubMed  Google Scholar 

  60. Ensrud K, Taylor B, Paudel M et al (2009) Serum25-hydroxyvitamin D levels and rate of hip bone loss in older men. J Clin Endocrinol Metab 94:2773–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cauley J, Parimi N, Ensrud K et al (2010) Serum 25-hydroxyvitamin D and the risk of hip and nonspine fractures in older men. J Bone Miner Res 25:545–553

    Article  CAS  PubMed  Google Scholar 

  62. Looker AC (2013) Serum 25-hydroxyvitamin D and risk of major osteoporotic fractures in older US adults. J Bone Miner Res 28:997–1006

    Article  CAS  PubMed  Google Scholar 

  63. Swanson C, Srikanth P, Lee C et al (2015) Associations of25-hydroxyvitamin D and 1,25-dihydroxyvitaminD with bone mineral density, bone mineral densitychange, and incident nonvertebral fracture. J Bone Miner Res 30:1403–1413

    Article  CAS  PubMed  Google Scholar 

  64. Snijder MB, van Schoor NM, Pluijm SM et al (2006) Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab 91:2980–2985

    Article  CAS  PubMed  Google Scholar 

  65. Barrett-Connor E, Laughlin G, Li H et al (2012) The association of concurrent vitamin D and sex hormone deficiency with bone loss and fracture risk in older men: the osteoporotic fractures in men (MrOS) study. J BoneMiner Res 27:2306–3231

    Article  CAS  Google Scholar 

  66. Lips P (2001) VitaminD deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501

    Article  CAS  PubMed  Google Scholar 

  67. Szulc P, Munoz F, Marchand F et al (2003) Role of vitamin D and parathyroid hormone in the regulation of bone turnover and bone mass in men: the MINOS study. Calcif Tissue Int 73:520–530

    Article  CAS  PubMed  Google Scholar 

  68. Carrivick SJ, Walsh JP, Brown SJ et al (2015) Brief report: does PTH increase with age, independent of 25-hydroxyvitamin D, phosphate, renal function, and ionized calcium? J Clin Endocrinol Metab 100:2131–2134

    Article  CAS  PubMed  Google Scholar 

  69. Curtis J, Ewing S, Bauer D et al (2012) Association of Intact parathyroid hormone levels with subsequent hip BMD loss: the osteoporotic fractures in men (MrOS) study. J Clin Endocrinol Metab 97:1937–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin-like growth factors and the skeleton. Endocr Rev 29:535–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Perrini S, Laviola L, Carreira MC et al (2010) The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol 205:201–210

    Article  CAS  PubMed  Google Scholar 

  72. Van den Beld AW, Kaufman JM, Zillikens MC et al (2018) The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol 6:647–658

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ebeling PR (2008) Clinical practice. osteoporosis in men. N Engl J Med 358:1474–1482

    Article  CAS  PubMed  Google Scholar 

  74. Adler R (2018) Update on osteoporosis in men. Best Pract Res Clin Endocrinol Metab 32:759–772. https://doi.org/10.1016/j.beem.2018.05.007

    Article  PubMed  Google Scholar 

  75. Fink HA, Litwack-Harrison S, Taylor BC et al (2016) Clinical utility of routine laboratory testing to identify possible secondarycauses in older men with osteoporosis: the osteoporotic fractures in men (MrOS) study. Osteoporos Int 27:331–338

    Article  CAS  PubMed  Google Scholar 

  76. Kanis JA, McCloskey EV, Johansson H et al (2008) A reference standard for the description of osteoporosis. Bone 42:467–475. https://doi.org/10.1016/j.bone.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  77. Kanis JA, Johnell O, Oden A et al (2001) Diagnosis ofosteoporosis and fracture threshold in men. Calcif Tissue Int 69:218–221

    Article  CAS  PubMed  Google Scholar 

  78. Watts NB, Leslie WD, Foldes AJ et al (2013) International society for clinical densitometry position development conference: task force on normative databases. J Clin Densitom 16:472–481. https://doi.org/10.1016/j.jocd.2013.08.001

    Article  PubMed  Google Scholar 

  79. Watts NB, Adler RA, Bilezikian JP et al (2012) Osteoporosis in men: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 97:1802–1822

    Article  CAS  PubMed  Google Scholar 

  80. Cosman F, de Beur SJ, LeBoff MS et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pasco JA, Lane SE, Brennan SL et al (2014) Fracture risk among older men: osteopenia and osteoporosis defined using cut-points derived from female versus male reference data. Osteoporos Int 25:857–862

    Article  CAS  PubMed  Google Scholar 

  82. Ensrud K, Taylor B, Peters K et al (2014) Implicationsof expanding indications for drug treatment to preventfracture in older men in United States: cross sectionaland longitudinal analysis of prospective cohort study. BMJ 349:g4120

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cauley JA, Cawthon PM, Peters KE et al (2016) Risk factors for hip fracture in older men: the osteoporotic fractures in men study(MrOS). J Bone Miner Res 31:1810–1819

    Article  CAS  PubMed  Google Scholar 

  84. Kanis JA, Johnell O, Oden A et al (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nguyen ND, Frost SA, Center JR et al (2008) Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int 18:1109–1117

    Article  Google Scholar 

  86. Kanis JA, Harvey NC, Cooper C et al (2016) A systematic review of intervention thresholds based on FRAX: a report prepared by the national osteoporosis guideline group and the international osteoporosis foundation. Arch Osteoporos 11:25. https://doi.org/10.1007/s11657-016-0278-z

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kanis JA, Harvey NC, Johansson H et al (2020) A decade of FRAX:how has it changed the management of osteoporosis? Aging Clin Exp Res 32:187–196. https://doi.org/10.1007/s40520-019-01432-y

    Article  PubMed  Google Scholar 

  88. Schousboe JT, Vo TN, Langsetmo L et al (2017) Association of trabecular bone score (TBS) with incident clinical and radiographic vertebral fractures adjusted for lumbar spine BMD in older men: a prospective cohort study. J Bone Min Res 32:1554–1558

    Article  CAS  Google Scholar 

  89. Body J-J, Bergmann P, Boonen S et al (2011) Non-pharmacological management of osteoporosis: a consensus of the Belgian Bone Club. Osteoporos Int 22:2769–2788. https://doi.org/10.1007/s00198-011-1545-x

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kaufman J-M, Lapauw B, Goemaere S (2014) Current and future treatments of osteoporosis in men. Best Pract Res Clin Endocrinol Metab 28:871–884. https://doi.org/10.1016/j.beem.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  91. Langsetmo L, Shikany JM, Burghardt AJ et al (2018) High dairy protein intake is associated with greater bone strength parameters at the distal radius and tibia in older men: a cross-sectional study. Osteoporos Int 29:69–77. https://doi.org/10.1007/s00198-017-4261-3

    Article  CAS  PubMed  Google Scholar 

  92. Rozenberg S, Body JJ, Bruyere O et al (2016) Effects of dairy products consumption on health: benefits and beliefs-a commentary from the belgian bone club and the european society for clinical and economic aspects of osteoporosis, steoarthritis and musculoskeletal diseases. Calcif Tissue Int 98:1–17. https://doi.org/10.1007/s00223-015-0062-x

    Article  CAS  PubMed  Google Scholar 

  93. Chandran M, Tay D, Mithal A (2019) Supplemental calcium intake in the aging individual: implications on skeletal and cardiovascular health. Aging Clin Exp Res 31:765–781. https://doi.org/10.1007/s40520-019-01150-5

    Article  PubMed  Google Scholar 

  94. Harvey NC, Biver E, Kaufman JM et al (2017) The role of calcium supplementation in healthy musculoskeletal ageing: an expert consensus meeting of the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO) and the international foundation for osteoporosis (IOF). Osteoporos Int 28:447–462

    Article  CAS  PubMed  Google Scholar 

  95. Rizzoli R, Boonen S, Brandi ML et al (2013) Vitamin D supplementation in elderly or postmenopausal women: a 2013 update of the 2008 recommendations from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Curr Med Res Opin 9:305–313

    Article  Google Scholar 

  96. Hurley DL, Binkley N, Camacho PM et al (2018) The use of vitamins and minerals in skeletal health: American association of clinical endocrinologists and the American college of endocrinology position statement. Endocr Pract 24:915–924. https://doi.org/10.4158/PS-2018-0050

    Article  PubMed  Google Scholar 

  97. Giustina A, Adler RA, Binkley N et al (2020) Consensus statement from 2nd international conference on controversies in vitamin D. Rev Endocr Metab Disord 21:89–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dawson-Hughes B (2017) Vitamin D and muscle function. J Steroid Biochem Mol Biol 173:313–316. https://doi.org/10.1016/j.jsbmb.2017.03.018

    Article  CAS  PubMed  Google Scholar 

  99. Rizzoli R (2021) Vitamin D supplementation: upper limit for safety revisited? Aging Clin Exp Res 33:19–24

    Article  PubMed  Google Scholar 

  100. Boonen S, Reginster JY, Kaufman JM et al (2012) Fracture risk and zoledronic acid therapy in men with osteoporosis. New Engl J Med 367:1714–1723. https://doi.org/10.1056/NEJMoa1204061

    Article  CAS  PubMed  Google Scholar 

  101. Orwoll E, Ettinger M, Weiss S et al (2000) Alendronate for the treatment of osteoporosis in men. N Engl J Med 343:604–610. https://doi.org/10.1056/NEJM200008313430902

    Article  CAS  PubMed  Google Scholar 

  102. Boonen S, Orwoll ES, Wenderoth D et al (2009) Once-weekly risedronate in men with osteoporosis: results of a 2-year, placebo-controlled, double-blind, multicenter study. J Bone Miner Res 24:719–725. https://doi.org/10.1359/jbmr.081214

    Article  CAS  PubMed  Google Scholar 

  103. Lyles KW, Colon-Emeric CS, Magaziner JS et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 357:1799–1809. https://doi.org/10.1056/NEJMoa074941

    Article  CAS  PubMed  Google Scholar 

  104. Boonen S, Orwoll E, Magaziner J et al (2011) Once-yearly zoledronic acid in older men compared with women with recent hip fracture. J Am Geriatr Soc 59:2084–2090. https://doi.org/10.1111/j.1532-5415.2011.03666

    Article  PubMed  Google Scholar 

  105. Orwoll ES, Miller PD, Adachi JD et al (2010) Efficacy and safety of a once-yearly i.v. infusion of zoledronic acid 5mg versus a once-weekly 70 mg oral alendronate in the treatment of male osteoporosis: a randomized, multicenter; double-blind, active control study. J Bone Miner Res 25:2239–2250

    Article  CAS  PubMed  Google Scholar 

  106. Smith MR, Egerdie B, Hernandez Toriz N et al (2009) Denosumab in men receiving androgen-deprivationtherapy for prostate cancer. N Engl J Med 361:745–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Orwoll E, Teglbjærg CS, Langdahl BL et al (2012) A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J Clin Endocrinol Metab 97:3161–3169. https://doi.org/10.1210/jc.2012-1569

    Article  CAS  PubMed  Google Scholar 

  108. Langdahl BL, Teglbjærg CS, Ho PR et al (2015) A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: results from the ADAMO trial. J Clin Endocrinol Metab 100:1335–1342. https://doi.org/10.1210/jc.2014-4079

    Article  CAS  PubMed  Google Scholar 

  109. Tsourdi E, Langdahl B, Cohen-Solal M et al (2017) Discontinuation of denosumab therapy for osteoporosis: a systematic review and position statement by ECTS. Bone 105:11–17. https://doi.org/10.1016/j.bone.2017.08.003

    Article  PubMed  Google Scholar 

  110. Orwoll ES, Scheele WH, Paul S et al (2003) The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 18:9–17. https://doi.org/10.1359/jbmr.2003.18.1.9

    Article  CAS  PubMed  Google Scholar 

  111. Kaufman JM, Orwoll E, Goemaere S et al (2005) Teriparatide effects on vertebralfractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int 16:510–516. https://doi.org/10.1007/s00198-004-1713-3

    Article  CAS  PubMed  Google Scholar 

  112. Finkelstein JS, Hayes A, Hunzelman JL et al (2003) The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349:1216–1226

    Article  CAS  PubMed  Google Scholar 

  113. Lewiecki EM, Blicharski T, Goemaere S et al (2018) A Phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J Clin Endocrinol Metab 103:3183–3193. https://doi.org/10.1210/jc.2017-02163

    Article  PubMed  Google Scholar 

  114. Fuggle NR, Cooper C, Harvey NC et al (2020) Assessment of cardiovascular safety of anti-osteoporosis drugs. Drugs 80:1537–1552. https://doi.org/10.1007/s40265-020-01364-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Snyder PJ, Kopperdahl DL, Stephens-Shields AJ et al (2017) Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: a controlled clinical trial. JAMA Intern Med 177:471–479

    Article  PubMed  PubMed Central  Google Scholar 

  116. Brown JE, Handforth C, Compston JE et al (2020) Guidance for the assessment and management of prostate cancer treatment-induced bone loss A consensus position statement from an expert group. J Bone Oncol 25:100311. https://doi.org/10.1016/j.jbo.2020.100311

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sanli I, van Helden SA, ten Broeke RHM et al (2019) The role of the fracture liaison service (FLS) in subsequent fracture prevention in extreme elderly. Aging Clin Exp Res 31:1105–1111. https://doi.org/10.1007/s40520-018-1054-2

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Kaufman.

Ethics declarations

Conflict of interest

The author has no potential conflict of interest relevant to this work.

Ethical statement

This manuscript contains no new data, not previously published, involving human participants or animals. All published work cited in this review appeared to comply with current research ethical standards This work has not been previously published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaufman, JM. Management of osteoporosis in older men. Aging Clin Exp Res 33, 1439–1452 (2021). https://doi.org/10.1007/s40520-021-01845-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-021-01845-8

Keywords

Navigation