Skip to main content
Log in

Stem Cell Tracking in Human Trials: A Meta-Regression

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The potential effectiveness of cell therapies is dependent upon homing of transplanted cells to relevant target organs. In this study we firstly characterise the range of methods employed in all human therapeutic-cell studies published to date investigated with cell-tracking. Secondly, we determine factors that predict target-organ cell uptake efficiency by meta-regression. Following a comprehensive literature search, we identified 19 relevant trials, representing 145 patients over the following 7 diseases: myocardial infarction; Chagasic cardiomyopathy; ischemic stroke; traumatic injury of brain or spinal cord; diabetes and cirrhosis. Cell-labelling strategies employed were: 18-fluorodeoxyglucose-PET, 111-indium-SPECT; 99-technetium-SPECT, and iron oxide-MRI. The following methodological parameters were extracted: label type; label dose; labelling efficiency; stability; cell dose; percentage labelled cells; disease type and chronicity; cell purity; cell type; and cell uptake efficiency. Meta-regression techniques were used to identify predictors of cell-labelling efficiency; viability and cell uptake efficiency. These analyses found that labelling efficiency is proportionate to cell dose, while cell viability is lowest with indium and long label incubation times. Uptake efficiency of cells is predicted by stem cell purity (positive association) and cell infusion number (negative association), although these two variables are themselves strongly negatively correlated between studies. In summary the methodological factors associated with enhanced therapeutic-cell homing from both our own analysis, and within-trial comparisons, are: acute (versus chronic) disease, selective stem cells (versus unselected cells), and intra-arterial (versus intravenous) delivery. However, future trials need to keep cell doses and imaging times constant so as to enable meaningful comparisons in uptake efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Jin, J., Jeong, S. I., Shin, Y. M., et al. (2009). Transplantation of mesenchymal stem cells within a poly(lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. European Journal of Heart Failure, 11(2), 147–153.

    Article  PubMed  CAS  Google Scholar 

  2. Singh, S., Arora, R., Handa, K., et al. (2009). Stem cells improve left ventricular function in acute myocardial infarction. Clinical Cardiology, 32(4), 176–180.

    Article  PubMed  Google Scholar 

  3. Bersano, A., Ballabio, E., Lanfranconi, S., et al. (2010). Clinical studies in stem cells transplantation for stroke: A review. Current Vascular Pharmacology, 8(1), 29–34.

    Article  PubMed  CAS  Google Scholar 

  4. Liao, W., Xie, J., Zhong, J., et al. (2009). Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation, 87(3), 350–359.

    Article  PubMed  Google Scholar 

  5. Bonavita, A. G., Quaresma, K., Cotta-de-Almeida, V., Pinto, M. A., Saraiva, R. M., & Alves, L. A. (2010). Hepatocyte xenotransplantation for treating liver disease. Xenotransplantation, 17(3), 181–187.

    Article  PubMed  Google Scholar 

  6. Halban, P. A., German, M. S., Kahn, S. E., & Weir, G. C. (2010). Current status of islet cell replacement and regeneration therapy. The Journal of Clinical Endocrinology and Metabolism, 95(3), 1034–1043.

    Article  PubMed  CAS  Google Scholar 

  7. Alexandrescu, D. T., Ichim, T. E., Riordan, N. H., et al. (2010). Immunotherapy for melanoma: Current status and perspectives. Journal of Immunotherapy, 33(6), 570–590.

    Article  PubMed  CAS  Google Scholar 

  8. Kurisaki, A., Ito, Y., Onuma, Y., Intoh, A., & Asashima, M. (2010). In vitro organogenesis using multipotent cells. Human Cell, 23(1), 1–14.

    PubMed  Google Scholar 

  9. Ma, J., Ge, J., Zhang, S., et al. (2005). Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Research in Cardiology, 100(3), 217–223.

    Article  PubMed  CAS  Google Scholar 

  10. Taguchi, A., Soma, T., Tanaka, H., et al. (2004). Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. Journal of Clinical Investigation, 114(3), 330–338.

    PubMed  CAS  Google Scholar 

  11. Grogaard, H. K., Sigurjonsson, O. E., Brekke, M., et al. (2007). Cardiac accumulation of bone marrow mononuclear progenitor cells after intracoronary or intravenous injection in pigs subjected to acute myocardial infarction with subsequent reperfusion. Cardiovascular Revascularization Medicine, 8(1), 21–27.

    Article  PubMed  Google Scholar 

  12. Li, L., Jiang, Q., Ding, G., et al. (2010). Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study. Journal of Cerebral Blood Flow and Metabolism, 30(3), 653–662.

    Article  PubMed  Google Scholar 

  13. Arminan, A., Gandia, C., Garcia-Verdugo, J. M., et al. (2010). Mesenchymal stem cells provide better results than hematopoietic precursors for the treatment of myocardial infarction. Journal of the American College of Cardiology, 55(20), 2244–2253.

    Article  PubMed  Google Scholar 

  14. Dedobbeleer, C., Blocklet, D., Toungouz, M., et al. (2009). Myocardial homing and coronary endothelial function after autologous blood CD34+ progenitor cells intracoronary injection in the chronic phase of myocardial infarction. Journal of Cardiovascular Pharmacology, 53(6), 480–485.

    Article  PubMed  CAS  Google Scholar 

  15. Blocklet, D., Toungouz, M., Berkenboom, G., et al. (2006). Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells, 24(2), 333–336.

    Article  PubMed  Google Scholar 

  16. Palestro, C. J., Love, C., & Bhargava, K. K. (2009). Labeled leukocyte imaging: Current status and future directions. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 53(1), 105–123.

    PubMed  CAS  Google Scholar 

  17. Srivastava, S. C., & Chervu, L. R. (1984). Radionuclide-labeled red blood cells: Current status and future prospects. Seminars in Nuclear Medicine, 14(2), 68–82.

    Article  PubMed  CAS  Google Scholar 

  18. Brenner, W., Aicher, A., Eckey, T., et al. (2004). 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. Journal of Nuclear Medicine, 45(3), 512–518.

    PubMed  CAS  Google Scholar 

  19. Politi, L. S. (2007). MR-based imaging of neural stem cells. Neuroradiology, 49(6), 523–534.

    Article  PubMed  Google Scholar 

  20. Ly, H. Q., Frangioni, J. V., & Hajjar, R. J. (2008). Imaging in cardiac cell-based therapy: In vivo tracking of the biological fate of therapeutic cells. Nature Clinical Practice. Cardiovascular Medicine, 5(Suppl 2), S96–S102.

    Article  PubMed  CAS  Google Scholar 

  21. Gera, A., Steinberg, G. K., & Guzman, R. (2010). In vivo neural stem cell imaging: Current modalities and future directions. Regenerative Medicine, 5(1), 73–86.

    Article  PubMed  Google Scholar 

  22. Pajtasz-Piasecka, E., & Indrova, M. (2010). Dendritic cell-based vaccines for the therapy of experimental tumors. Immunotherapy, 2(2), 257–268.

    Article  PubMed  CAS  Google Scholar 

  23. Khan, A. A., Shaik, M. V., Parveen, N., et al. (2010). Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis. Cell Transplantation, 19(4), 409–418.

    PubMed  Google Scholar 

  24. Toso, C., Vallee, J. P., Morel, P., et al. (2008). Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labelling. American Journal of Transplantation, 8(3), 701–706.

    Article  PubMed  CAS  Google Scholar 

  25. Schachinger, V., Aicher, A., Dobert, N., et al. (2008). Pilot trial on determinants of progenitor cell recruitment to the infracted human myocardium. Circulation, 118(14), 1425–1432.

    Article  PubMed  Google Scholar 

  26. Zhu, J., Zhou, L., & XingWu, F. (2006). Tracking neural stem cells in patients with brain trauma. The New England Journal of Medicine, 355(22), 2376–2378.

    Article  PubMed  CAS  Google Scholar 

  27. Hofmann, M., Wollert, K. C., Meyer, G. P., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111(17), 2198–2202.

    Article  PubMed  Google Scholar 

  28. Kang, W. J., Kang, H. J., Kim, H. S., Chung, J. K., Lee, M. C., & Lee, D. S. (2006). Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. Journal of Nuclear Medicine, 47(8), 1295–1301.

    PubMed  Google Scholar 

  29. Caveliers, V., De, K. G., Everaert, H., et al. (2007). In vivo visualization of 111In labeled CD133+ peripheral blood stem cells after intracoronary administration in patients with chronic ischemic heart disease. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 51(1), 61–66.

    PubMed  CAS  Google Scholar 

  30. Callera, F., & de Melo, C. M. (2007). Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells’ migration into the injured site. Stem Cells and Development, 16(3), 461–466.

    Article  PubMed  Google Scholar 

  31. Penicka, M., Lang, O., Widimsky, P., et al. (2007). One-day kinetics of myocardial engraftment after intracoronary injection of bone marrow mononuclear cells in patients with acute and chronic myocardial infarction. Heart, 93(7), 837–841.

    Article  PubMed  CAS  Google Scholar 

  32. Goussetis, E., Manginas, A., Koutelou, M., et al. (2006). Intracoronary infusion of CD133+ and CD133-CD34+ selected autologous bone marrow progenitor cells in patients with chronic ischemic cardiomyopathy: Cell isolation, adherence to the infarcted area, and body distribution. Stem Cells, 24(10), 2279–2283.

    Article  PubMed  CAS  Google Scholar 

  33. Jacob, J. L., Salis, F. V., Ruiz, M. A., & Greco, O. T. (2007). Labeled stem cells transplantation to the myocardium of a patient with Chagas’ disease. Arquivos Brasileiros de Cardiologia, 89(2), e10–e11.

    Article  PubMed  Google Scholar 

  34. Ballios, B. G., & van der Kooy, D. (2010). Biology and therapeutic potential of adult retinal stem cells. Canadian Journal of Ophthalmology, 45(4), 342–351.

    Article  PubMed  Google Scholar 

  35. Lindvall, O., & Kokaia, Z. (2009). Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends in Pharmacological Sciences, 30(5), 260–267.

    Article  PubMed  CAS  Google Scholar 

  36. Park, D. H., Lee, J. H., Borlongan, C. V., Sanberg, P. R., Chung, Y. G., & Cho, T. H. (2010). Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Reviews, 7(1), 181–194.

    Article  Google Scholar 

  37. Zhang, Z. G., & Chopp, M. (2009). Neurorestorative therapies for stroke: Underlying mechanisms and translation to the clinic. Lancet Neurology, 8(5), 491–500.

    Article  PubMed  Google Scholar 

  38. Steinman, R. M., & Dhodapkar, M. (2001). Active immunization against cancer with dendritic cells: The near future. International Journal of Cancer, 94(4), 459–473.

    Article  CAS  Google Scholar 

  39. Barry, F. P., & Murphy, J. M. (2004). Mesenchymal stem cells: Clinical applications and biological characterization. The International Journal of Biochemistry & Cell Biology, 36(4), 568–584.

    Article  CAS  Google Scholar 

  40. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10344–10349.

    Article  PubMed  CAS  Google Scholar 

  41. ten Berge, R. J., Natarajan, A. T., Hardeman, M. R., van Royen, E. A., & Schellekens, P. T. (1983). Labeling with indium-111 has detrimental effects on human lymphocytes: Concise communication. Journal of Nuclear Medicine, 24(7), 615–620.

    PubMed  Google Scholar 

  42. Kurpisz, M., Czepczynski, R., Grygielska, B., et al. (2007). Bone marrow stem cell imaging after intracoronary administration. International Journal of Cardiology, 121(2), 194–195.

    Article  PubMed  CAS  Google Scholar 

  43. Askari, A. T., Unzek, S., Popovic, Z. B., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362(9385), 697–703.

    Article  PubMed  CAS  Google Scholar 

  44. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF. Natural Medicines, 10(8), 858–864.

    Article  CAS  Google Scholar 

  45. Ishiwata, K., Kubota, K., Murakami, M., et al. (1993). Re-evaluation of amino acid PET studies: Can the protein synthesis rates in brain and tumor tissues be measured in vivo? Journal of Nuclear Medicine, 34(11), 1936–1943.

    PubMed  CAS  Google Scholar 

  46. Barbosa da Fonseca, L.M., Xavier, S.S., Rosado de Castro, P.H., et al. (2010). Biodistribution of bone marrow mononuclear cells in chronic chagasic cardiomyopathy after intracoronary injection. International Journal of Cardiology. March [Epub ahead of print]

  47. Jendelova, P., Herynek, V., Urdzikova, L., et al. (2005). Magnetic resonance tracking of human CD34+ progenitor cells separated by means of immunomagnetic selection and transplanted into injured rat brain. Cell Transplantation, 14(4), 173–182.

    Article  PubMed  Google Scholar 

  48. Mesquita, C. T., Correa, P. L., Felix, R. C., et al. (2005). Autologous bone marrow mononuclear cells labeled with Tc-99 m hexamethylpropylene amine oxime scintigraphy after intracoronary stem cell therapy in acute myocardial infarction. Journal of Nuclear Cardiology, 12(5), 610–612.

    Article  PubMed  Google Scholar 

  49. Correa, P. L., Mesquita, C. T., Felix, R. M., et al. (2007). Assessment of intra-arterial injected autologous bone marrow mononuclear cell distribution by radioactive labeling in acute ischemic stroke. Clinical Nuclear Medicine, 32(11), 839–841.

    Article  PubMed  Google Scholar 

  50. Barbosa da Fonseca, L. M., Battistella, V., de Freitas, G. R., et al. (2009). Early tissue distribution of bone marrow mononuclear cells after intra-arterial delivery in a patient with chronic stroke. Circulation, 120(6), 539–541.

    Article  PubMed  Google Scholar 

  51. Barbosa da Fonseca, L. M., Gutfilen, B., Rosado de Castro, P. H., et al. (2010). Migration and homing of bone-marrow mononuclear cells in chronic ischemic stroke after intra-arterial injection. Experimental Neurology, 221(1), 122–128.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

PS and PB supported by UK Department of Health Senior Fellowships.

We thank Professor Eric Aboagye for a critical appraisal.

Conflict of Interest

None Declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Bentley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McColgan, P., Sharma, P. & Bentley, P. Stem Cell Tracking in Human Trials: A Meta-Regression. Stem Cell Rev and Rep 7, 1031–1040 (2011). https://doi.org/10.1007/s12015-011-9260-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9260-8

Keywords

Navigation