Skip to main content

Advertisement

Log in

IL-23 Responsive Innate-Like T Cells in Spondyloarthritis: the Less Frequent They Are, the More Vital They Appear

  • Spondyloarthritis (MA Khan, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

A key role for the IL-23/IL-17 immune axis in spondyloarthritis (SpA) is supported by cumulative evidence from genetic and translational studies and was recently confirmed in clinical trials. Although initially linked to T helper 17 cells, it is now clear that additional unconventional T cell subpopulations respond towards IL-23, including RORγt+ CD3+CD4CD8 T cells, TCRγδ17 cells, KIR3DL2+CD4+ T cells and iNKT17 cells. Although these innate-like T cells are present only at low frequencies and often with a specific tissue distribution, it is proposed that they could play a vital function in the development or progression of SpA-related pathology. In this review, we highlight the emerging knowledge on these specialized IL-23 responsive T cells with regard to their relevance in SpA. Finally, we will discuss these findings in light of novel drugs targeting the IL-23/IL-17 axis, currently being tested in SpA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SpA:

Spondyloarthritides

AS:

Ankylosing spondylitis

IBD:

Inflammatory bowel disease

RA:

Rheumatoid arthritis

IL:

Interleukin

CIA:

Collagen-induced arthritis

RORγt:

Retinoic acid receptor-related orphan receptor-yt

Th:

T helper

iNKT:

Invariant natural killer T cells

UPR:

Unfolded protein response

PBMC:

Peripheral blood mononuclear cells

KIR:

Killer cell immunoglobulin-like receptor

SF:

Synovial fluid

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rudwaleit M, Van Der HD, Landewe R, Akkoc N, Brandt J, Chou CT, et al. The assessment of spondyloarthritis international society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis. 2011;70:25.

    Article  CAS  PubMed  Google Scholar 

  2. Jacques P, Elewaut D. Joint expedition: linking gut inflammation to arthritis. Mucosal Immunol. 2008;1:364.

    Article  CAS  PubMed  Google Scholar 

  3. Van Praet L, Van den Bosch FE, Jacques P, Carron P, Jans L, Colman R, et al. Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model. Ann Rheum Dis. 2013;72:414.

  4. De Wilde K, Debusschere K, Beeckman S, Jacques P, Elewaut D. Integrating the pathogenesis of spondyloarthritis: gut and joint united? Curr Opin Rheumatol. 2015;27:189.

  5. Wright C, Sibani S, Trudgian D, Fischer R, Kessler B, LaBaer J, et al. Detection of multiple autoantibodies in patients with ankylosing spondylitis using nucleic acid programmable protein arrays. Mol Cell Proteomics. 2012;11:M9.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Baerlecken NT, Nothdorft S, Stummvoll GH, Sieper J, Rudwaleit M, Reuter S, et al. Autoantibodies against CD74 in spondyloarthritis. Ann Rheum Dis. 2014;73:1211.

    Article  CAS  PubMed  Google Scholar 

  7. Benjamin M, McGonagle D. Histopathologic changes at “synovio-entheseal complexes” suggesting a novel mechanism for synovitis in osteoarthritis and spondylarthritis. Arthritis Rheum. 2007;56:3601.

    Article  PubMed  Google Scholar 

  8. Hreggvidsdottir HS, Noordenbos T, Baeten DL. Inflammatory pathways in spondyloarthritis. Mol Immunol. 2014;57:28.

    Article  CAS  PubMed  Google Scholar 

  9. Schett G, Elewaut D, McInnes IB, Dayer JM, Neurath MF. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat Med. 2013;19:822.

    Article  CAS  PubMed  Google Scholar 

  10. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+CD3+CD4−CD8− entheseal resident T cells. Nat Med. 2012;18:1069. A hallmark study, providing direct evidence that IL-23 is linked to SpA pathology by acting on a particular innate-like Tcell population.

    Article  CAS  PubMed  Google Scholar 

  11. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348.

    CAS  PubMed  Google Scholar 

  12. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744.

    Article  CAS  PubMed  Google Scholar 

  13. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198:1951.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Yeremenko N, Paramarta JE, Baeten D. The interleukin-23/interleukin-17 immune axis as a promising new target in the treatment of spondyloarthritis. Curr Opin Rheumatol. 2014;26:361.

    Article  CAS  PubMed  Google Scholar 

  15. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13:715.

    Article  CAS  PubMed  Google Scholar 

  16. Mise-Omata S, Kuroda E, Niikura J, Yamashita U, Obata Y, Doi TS. A proximal kappaB site in the IL-23 p19 promoter is responsible for RelA- and c-Rel-dependent transcription. J Immunol. 2007;179:6596.

    Article  CAS  PubMed  Google Scholar 

  17. LeibundGut-Landmann S, Gross SO, Robinson MJ, Osorio F, Slack EC, Tsoni SV, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630.

    Article  CAS  PubMed  Google Scholar 

  18. van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SA, et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity. 2007;27:660.

    Article  PubMed  Google Scholar 

  19. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168:5699.

    Article  CAS  PubMed  Google Scholar 

  20. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121.

    Article  CAS  PubMed  Google Scholar 

  21. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zuniga LA, Jain R, Haines C, Cua DJ. Th17 cell development: from the cradle to the grave. Immunol Rev. 2013;252:78. These reviews provide the latest insights on Th17 cell development and homeostasis.

    Article  PubMed  Google Scholar 

  23. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14:585. These reviews provide the latest insights on Th17 cell development and homeostasis.

    Article  CAS  PubMed  Google Scholar 

  24. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39:1329.

    Article  CAS  PubMed  Google Scholar 

  25. Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, Leo P, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45:730.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Di Meglio P, Di CA, Laggner U, Chu CC, Napolitano L, Villanova F, et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS ONE. 2011;6:e17160.

  27. Sarin R, Wu X, Abraham C. Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T-cell functional responses. Proc Natl Acad Sci U S A. 2011;108:9560.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Awasthi A, Riol-Blanco L, Jager A, Korn T, Pot C, Galileos G, et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol. 2009;182:5904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. McGonagle D, Marzo-Ortega H, O’Connor P, Gibbon W, Hawkey P, Henshaw K, et al. Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann Rheum Dis. 2002;61:534.30.

    Article  Google Scholar 

  30. Jacques P, Lambrecht S, Verheugen E, Pauwels E, Kollias G, Armaka M, et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis. 2014;73:437. This paper provides essential proof of concept that mechanical strain drives both entheseal inflammation and new bone formation in mouse models of SpA. Authors show that mature T cells are not involved in enthesitis development in TNFΔARE mice. This highlights the existence of several pathways able to induce enthesitis, some of which rely on IL-23R+ innate-like entheseal resident cells while others are strictly dependent upon stromal cell function.

    Article  PubMed  Google Scholar 

  31. Melis L, Vandooren B, Kruithof E, Jacques P, De VM, Mielants H, et al. Systemic levels of IL-23 are strongly associated with disease activity in rheumatoid arthritis but not spondyloarthritis. Ann Rheum Dis. 2010;69:618.

    Article  CAS  PubMed  Google Scholar 

  32. Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010;33:279.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Benham H, Rehaume LM, Hasnain SZ, Velasco J, Baillet AC, Ruutu M, et al. Interleukin-23 mediates the intestinal response to microbial beta-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. 2014;66:1755.

    Article  CAS  PubMed  Google Scholar 

  34. Ciccia F, Bombardieri M, Principato A, Giardina A, Tripodo C, Porcasi R, et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 2009;60:955.

    Article  CAS  PubMed  Google Scholar 

  35. Souza D. IL23 overexpression demonstrates gut-joint inflammation link and increased expression of spondyloarthopathy associated genes in vivo. Arthritis Rheumatol. 2014;66:S844.

    Article  Google Scholar 

  36. Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10:467.

    Article  CAS  PubMed  Google Scholar 

  37. Eberl M, Hintz M, Reichenberg A, Kollas AK, Wiesner J, Jomaa H. Microbial isoprenoid biosynthesis and human gammadelta T cell activation. FEBS Lett. 2003;544:4.

    Article  CAS  PubMed  Google Scholar 

  38. Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T. Activation of V gamma 9 V delta 2 T cells by NKG2D. J Immunol. 2005;175:2144.

    Article  CAS  PubMed  Google Scholar 

  39. Lockhart E, Green AM, Flynn JL. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol. 2006;177:4662.

    Article  CAS  PubMed  Google Scholar 

  40. Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y. Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol. 2007;178:4466.

    Article  CAS  PubMed  Google Scholar 

  41. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, et al. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol. 2009;10:427.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity. 2009;31:321.

    Article  CAS  PubMed  Google Scholar 

  43. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009;31:331.

    Article  CAS  PubMed  Google Scholar 

  44. Petermann F, Rothhammer V, Claussen MC, Haas JD, Blanco LR, Heink S, et al. gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity. 2010;33:351.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kenna TJ, Davidson SI, Duan R, Bradbury LA, McFarlane J, Smith M, et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive gamma/delta T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 2012;64:1420.

    Article  CAS  PubMed  Google Scholar 

  46. Deusch K, Luling F, Reich K, Classen M, Wagner H, Pfeffer K. A major fraction of human intraepithelial lymphocytes simultaneously expresses the gamma/delta T cell receptor, the CD8 accessory molecule and preferentially uses the V delta 1 gene segment. Eur J Immunol. 1991;21:1053.

    Article  CAS  PubMed  Google Scholar 

  47. Van Bergen J, Thompson A, Van Der SA, Ottenhoff TH, Gussekloo J, Koning F. Phenotypic and functional characterization of CD4 T cells expressing killer Ig-like receptors. J Immunol. 2004;173:6719.

  48. Bowness P, Ridley A, Shaw J, Chan AT, Wong-Baeza I, Fleming M, et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol. 2011;186:2672.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Reveille JD. Genetics of spondyloarthritis—beyond the MHC. Nat Rev Rheumatol. 2012;8:296.

    Article  CAS  PubMed  Google Scholar 

  50. May E, Dorris ML, Satumtira N, Iqbal I, Rehman MI, Lightfoot E, et al. CD8 alpha beta T cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. J Immunol. 2003;170:1099.

    Article  CAS  PubMed  Google Scholar 

  51. Goodall JC, Wu C, Zhang Y, McNeill L, Ellis L, Saudek V, et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc Natl Acad Sci U S A. 2010;107:17698.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. DeLay ML, Turner MJ, Klenk EI, Smith JA, Sowders DP, Colbert RA. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 2009;60:2633.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Neerinckx B, Carter S, Lories RJ. No evidence for a critical role of the unfolded protein response in synovium and blood of patients with ankylosing spondylitis. Ann Rheum Dis. 2014;73:629. Reports on the study of the unfolded protein response (UPR) in AS pathology. Unexpectedly, data from these studies suggest that the role of an UPR induced production of IL-23 in joint pathology is limited. In addition, IL-23 might play a tissue-specific role (in the gut), specifically priming a subset of IL-23-responsive pro-inflammatory cells.

  54. Ciccia F, Ccardo-Palumbo A, Rizzo A, Guggino G, Raimondo S, Giardina A, et al. Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann Rheum Dis. 2014;73:1566. Report on the study of the unfolded protein response (UPR) in AS pathology. Unexpectedly, data from these studies suggest that the role of an UPR induced production of IL-23 in joint pathology is limited. In addition, IL-23 might play a tissue-specific role (in the gut), specifically priming a subset of IL-23-responsive pro-inflammatory cells.

    Article  CAS  PubMed  Google Scholar 

  55. Jansen, D. T., M. Hameetman, B. J. van, T. W. Huizinga, H. D. van der, R. E. Toes, and F. A. van Gaalen. IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities. Rheumatology. (Oxford). 2004

  56. Melis L, Van PL, Pircher H, Venken K, Elewaut D. Senescence marker killer cell lectin-like receptor G1 (KLRG1) contributes to TNF-alpha production by interaction with its soluble E-cadherin ligand in chronically inflamed joints. Ann Rheum Dis. 2014;73:1223.

    Article  CAS  PubMed  Google Scholar 

  57. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297.

    Article  CAS  PubMed  Google Scholar 

  58. Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest. 2004;114:1379.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Rossjohn J, Pellicci DG, Patel O, Gapin L, Godfrey DI. Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol. 2012;12:845.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science. 1997;278:1626.

    Article  CAS  PubMed  Google Scholar 

  61. Gapin L, Godfrey DI, Rossjohn J. Natural killer T cell obsession with self-antigens. Curr Opin Immunol. 2013;25:168.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kain L, Webb B, Anderson BL, Deng S, Holt M, Constanzo A, et al. The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian alpha-linked glycosylceramides. Immunity. 2014;41:543.

    Article  CAS  PubMed  Google Scholar 

  63. Brigl M, Tatituri RV, Watts GF, Bhowruth V, Leadbetter EA, Barton N, et al. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J Exp Med. 2011;208:1163.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Van KL, Parekh VV, Wu L. Invariant natural killer T cells as sensors and managers of inflammation. Trends Immunol. 2013;34:50.

    Article  Google Scholar 

  65. Michel ML, Keller AC, Paget C, Fujio M, Trottein F, Savage PB, et al. Identification of an IL-17-producing NK1.1(neg) iNKT cell population involved in airway neutrophilia. J Exp Med. 2007;204:995.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Coquet JM, Chakravarti S, Kyparissoudis K, McNab FW, Pitt LA, McKenzie BS, et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci U S A. 2008;105:11287.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Michel ML, Mendes-da-Cruz D, Keller AC, Lochner M, Schneider E, Dy M, et al. Critical role of ROR-gammat in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc Natl Acad Sci U S A. 2008;105:19845.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol. 2013;14:1146.

    Article  CAS  PubMed  Google Scholar 

  69. Monteiro M, Almeida CF, Gua-Doce A, Graca L. Induced IL-17-producing invariant NKT cells require activation in presence of TGF-beta and IL-1beta. J Immunol. 2013;190:805.

    Article  CAS  PubMed  Google Scholar 

  70. Moreira-Teixeira L, Resende M, Coffre M, Devergne O, Herbeuval JP, Hermine O, et al. Proinflammatory environment dictates the IL-17-producing capacity of human invariant NKT cells. J Immunol. 2011;186:5758.

    Article  CAS  PubMed  Google Scholar 

  71. Jacques P, Venken K, Van BK, Hammad H, Seeuws S, Drennan MB, et al. Invariant natural killer T cells are natural regulators of murine spondylarthritis. Arthritis Rheum. 2010;62:988.

    Article  CAS  PubMed  Google Scholar 

  72. Coppieters K, Van BK, Jacques P, Dewint P, Vervloet A, Vander CB, et al. A single early activation of invariant NK T cells confers long-term protection against collagen-induced arthritis in a ligand-specific manner. J Immunol. 2007;179:2300.

    Article  CAS  PubMed  Google Scholar 

  73. Drennan MB, Aspeslagh S, Elewaut D. Invariant natural killer T cells in rheumatic disease: a joint dilemma. Nat Rev Rheumatol. 2010;6:90.

    Article  CAS  PubMed  Google Scholar 

  74. Yoshiga Y, Goto D, Segawa S, Ohnishi Y, Matsumoto I, Ito S, et al. Invariant NKT cells produce IL-17 through IL-23-dependent and -independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int J Mol Med. 2008;22:369.

    CAS  PubMed  Google Scholar 

  75. McInnes IB, Kavanaugh A, Gottlieb AB, Puig L, Rahman P, Ritchlin C, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 2013;382:780.

    Article  CAS  PubMed  Google Scholar 

  76. Ritchlin C, Rahman P, Kavanaugh A, McInnes IB, Puig L, Li S, et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann Rheum Dis. 2014;73:990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Poddubnyy D, Hermann KG, Callhoff J, Listing J, Sieper J. Ustekinumab for the treatment of patients with active ankylosing spondylitis: results of a 28-week, prospective, open-label, proof-of-concept study (TOPAS). Ann Rheum Dis. 2014;73:817.

    Article  CAS  PubMed  Google Scholar 

  78. Baeten D, Baraliakos X, Braun J, Sieper J, Emery P, Van Der HD, et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382:1705.

    Article  CAS  PubMed  Google Scholar 

  79. Baeten DL, Braun J, Baraliakos X, Sieper J, Dougados M, Emery P, et al. Secukinumab, a monoclonal antibody to interleukin-17A, significantly improves signs and symptoms of active ankylosing spondylitis: results of a 52-week phase 3 randomized placebo-controlled trial with intravenous loading and subcutaneous maintenance dosing. Arthritis Rheumatol. 2014;66:S360. Recent reports on phase III trials with the a selective IL-17A inhibitor (secukinumab). This drug provided rapid and significant long-term improvement of signs and symptoms in AS patients regardless of prior anti-TNF exposure.

    Google Scholar 

  80. Sieper J, Braun J, Baraliakos X, Baeten DL, Dougados M, Emery P, et al. Secukinumab, a monoclonal antibody to interleukin-17A, significantly improves signs and symptoms of active ankylosing spondylitis: results of a phase 3, randomized, placebo-controlled trial with subcutaneous loading and maintenance dosing. Arthritis Rheumatol. 2014;66:S232. Recent reports on phase III trials with the a selective IL-17A inhibitor (secukinumab). This drug provided rapid and significant long-term improvement of signs and symptoms in AS patients regardless of prior anti-TNF exposure.

    Article  Google Scholar 

  81. Deodhar AA, Baeten DL, Braun J, Baraliakos X, Sieper J, Dougados M, et al. Secukinumab, a monoclonal antibody to interleukin-17A, significantly improves physical function and quality of life in subjects with active ankylosing spondylitis: results of a phase 3 randomized, placebo-controlled trial with intravenous loading and subcutaneous maintenance dosing. Arthritis Rheumatol. 2014;66:S233–4. Recent reports on phase III trials with the a selective IL-17A inhibitor (secukinumab). This drug provided rapid and significant long-term improvement of signs and symptoms in AS patients regardless of prior anti-TNF exposure.

    Article  Google Scholar 

  82. Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693.

    Article  CAS  PubMed  Google Scholar 

  83. Targan SR, Feagan BG, Vermeire S, Panaccione R, Melmed GY, Blosch C, et al. A randomized, double-blind, placebo-controlled study to evaluate the safety, tolerability, and efficacy of AMG 827 in subjects with moderate to severe Crohn’s disease. Gastroenterology. 2012;143:E26.

    Article  CAS  Google Scholar 

  84. Van Praet, J. T., E. Donovan, I. Vanassche, M. B. Drennan, F. Windels, A. Dendooven, L. Allais, C. A. Cuvelier, L. F. van de, P. S. Norris, A. A. Kruglov, S. A. Nedospasov, S. Rabot, R. Tito, J. Raes, V. Gaboriau-Routhiau, N. Cerf-Bensussan, W. T. Van de, G. Eberl, C. F. Ware, and D. Elewaut. Commensal microbiota influence systemic autoimmune responses. EMBO J. 2015;34:466.

  85. Papp KA, Griffiths CE, Gordon K, Lebwohl M, Szapary PO, Wasfi Y, et al. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from 5 years of follow-up. Br J Dermatol. 2013;168:844.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

KV is supported by a personal postdoctoral fellowship from the Fund for Scientific Research-Flanders (FWO-Vlaanderen). DE is a member of a multidisciplinary platform group (MRP-GROUP-ID) from Ghent University.

Compliance with Ethics Guidelines

Conflict of Interest

Koen Venken and Dirk Elewaut declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Venken.

Additional information

This article is part of the Topical Collection on Spondyloarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venken, K., Elewaut, D. IL-23 Responsive Innate-Like T Cells in Spondyloarthritis: the Less Frequent They Are, the More Vital They Appear. Curr Rheumatol Rep 17, 30 (2015). https://doi.org/10.1007/s11926-015-0507-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-015-0507-2

Keywords

Navigation