Skip to main content
Log in

Osteoarthritis and Osteoporosis: What Is the Overlap?

  • OSTEOPOROSIS AND METABOLIC BONE DISEASE (KG SAAG, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) and osteoporosis (OP) are highly prevalent health problems, associated with considerable morbidity. In the past, attention was focused on a supposed inverse relationship between OA and OP, since both disorders usually affect the elderly, but were regarded to rarely coexist in a single person. However, recent studies have revealed several factors which contribute to the pathogenesis of both disorders. These insights might contribute to the development of shared new treatment options in the near future. Increased subchondral bone loss is a characteristic feature of OP and the early stage of OA, and this finding is the rationale for studies on the effect of anti-osteoporotic drugs in OA. In addition, inflammation and unfavourable body composition have been recognized as contributing factors for both disorders. Underweight is a risk factor for OP, while obesity stimulates the development of OA, by mechanical overloading of weight-bearing joints but also by supposed unfavourable effects of adipokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dequeker J, Aerssens J, Luyten FP. Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clin Exp Res. 2003;15:426–39.

    PubMed  Google Scholar 

  2. Hart DJ, Mootoosamy I, Doyle DV, et al. The relationship between osteoarthritis and osteoporosis in the general population: the Chingford Study. Ann Rheum Dis. 1994;53:158–62.

    Article  PubMed  CAS  Google Scholar 

  3. Healey JH, Vigorita VJ, Lane JM. The coexistence and characteristics of osteoarthritis and osteoporosis. J Bone Joint Surg Am. 1985;67:586–92.

    PubMed  CAS  Google Scholar 

  4. Lafeber FPJG, Van Laar JM. Strontium ranelate: ready for clinical use as disease-modifying osteoarthritis drug? Ann Rheum Dis. 2013;72:157–61.

    Article  PubMed  Google Scholar 

  5. •• Bijlsma JWJ, Berenbaum E, Lafeber FPJG. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377:2115–26. This is an outstanding state-of-the-art article on the epidemiology, etiology, clinical characteristics, diagnostic measures, and therapeutic options for osteoarthritis.

    Article  PubMed  Google Scholar 

  6. Felson DT, McLaughlin S, Goggins J, et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med. 2003;139:330–6.

    PubMed  Google Scholar 

  7. Berry PA, Maciewicz RA, Cicuttini FM, et al. Markers of bone formation and resorption identify subgroups of patients with clinical knee osteoarthritis who have reduced rates of cartilage loss. J Rheumatol. 2010;37:1252–9.

    Article  PubMed  CAS  Google Scholar 

  8. Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010;1192:230–7.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang ZM, Li ZC, Jiang LS, et al. Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis. Osteoporos Int. 2010;21:1383–90.

    Article  PubMed  Google Scholar 

  10. Funck-Brentano T, Cohen-Solal M. Crosstalk between cartilage and bone: when bone cytokines matter. Cytokine Growth Factor Rev. 2011;22:91–7.

    Article  PubMed  CAS  Google Scholar 

  11. Bultink IEM, Vis M, Van der Horst-Bruinsma IE, Lems WF. Inflammatory rheumatic disorders and bone. Curr Rheumatol Rep. 2012;14:224–30.

    Article  PubMed  Google Scholar 

  12. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.

    Article  PubMed  CAS  Google Scholar 

  13. •• Schett G, Saag KG, Bijlsma JWJ. From bone biology to clinical outcome: state of the art and future perspectives. Ann Rheum Dis. 2010;69:1415–9. This is an excellent state-of-the-art article on bone biology.

    Article  PubMed  CAS  Google Scholar 

  14. • Geusens PP, Lems WF. Osteoimmunology and osteoporosis. Arthritis Res Ther. 2011;13:242. Epub. This article is a large overview on osteoimmunology and osteoporosis.

    Article  PubMed  CAS  Google Scholar 

  15. Xu S, Wang Y, Lu J, Xu J. Osteoprotegerin and RANKL in the pathogenesis of rheumatoid arhritis-induced osteoporosis. Rheumatol Int. 2012;32:3397–403.

    Article  PubMed  CAS  Google Scholar 

  16. Schett G, Kiechl S, Weger S, et al. High-sensitivity C-reactive protein and risk of nontraumatic fractures in the Bruneck study. Arch Intern Med. 2006;166:2495–501.

    Article  PubMed  CAS  Google Scholar 

  17. • Yusuf E, Nelissen RG, Ioan-Facsinay A, et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis. 2010;69:761–5. This is an excellent systematic review on the association between obesity and hand osteoarthritis.

    Article  PubMed  Google Scholar 

  18. Hunter DJ, Felson DT. Osteoarthritis. BMJ. 2006;332:639–42.

    Article  PubMed  Google Scholar 

  19. Berenbaum F, Wymard F, Houard X. Osteoarthritis, inflammation and obesity. Curr Opin Rheumatol. 2013;25:114–8.

    Article  PubMed  CAS  Google Scholar 

  20. Filková M, Lišková M, Hulejová H, et al. Increased serum adiponectin levels in female patients with erosive compared with non-erosive osteoarthritis. Ann Rheum Dis. 2009;68:295–6.

    Article  PubMed  Google Scholar 

  21. Choe JY, Bae J, Jung HY, et al. Serum resistin level is associated with radiographic changes in hand osteoarthritis: cross-sectional study. Joint Bone Spine. 2012;79:160–5.

    Article  PubMed  CAS  Google Scholar 

  22. Yusuf E, Ioan-Facsinay A, Bijsterbosch J, et al. Association between leptin, adiponectin and resistin and long-term progression of hand osteoarthritis. Ann Rheum Dis. 2011;70:282–4.

    Google Scholar 

  23. Honsawek H, Chayanupatkul M. Correlation of plasma and synovial fluid adiponectin with knee osteoarthritis severity. Arch Med Res. 2010;41:593–8.

    Article  PubMed  CAS  Google Scholar 

  24. Koskinen A, Juslin S, Nieminen R, et al. Adiponectin associates with markers of cartilage degradation in osteoarthritis and induces production of proinflammatory and catabolic factors through mitogen-activated protein kinase pathways. Arthritis Res Ther. 2011;13:R184.

    Article  PubMed  CAS  Google Scholar 

  25. Berry PA, Jones SW, Cicuttini FM, Wluka AE, Maciewicz RA. Temporal relationship between serum adipokines, biomarkers of bone and cartilage turnover, and cartilage volume loss in a population with clinical knee osteoarthritis. Arthritis Rheum. 2011;63:700–7.

    Article  PubMed  CAS  Google Scholar 

  26. Iwamoto J, Takeda T, Sato Y, Matsumoto H. Serum leptin concentration positively correlates with body weight and total fat mass in postmenopausal Japanese women with osteoarthritis of the knee. Arthritis. 2011;2011:580632.

    Article  PubMed  Google Scholar 

  27. Anandacoomarasamy A, Giuffre BM, Leibman S, et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage: clinical associations in obese adults. J Rheumatol. 2009;36:1056–62.

    Article  PubMed  Google Scholar 

  28. Van Spil WE, Welsing PMJ, Kloppenburg M, et al. Cross-sectional and predictive associations between plasma adipokines and radiographic signs of early-stage knee osteoarthritis: data from CHECK. Osteoarthr Cartil. 2012;20:1278–85.

    Article  PubMed  Google Scholar 

  29. De Laet C, Kanis JA, Odén A, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16:1330–8.

    Article  PubMed  Google Scholar 

  30. Prieto-Alhambra D, Premaor MO, Fina Avilés F, et al. The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res. 2012;27:294–300.

    Article  PubMed  Google Scholar 

  31. Armstrong ME, Cairns BJ, Banks E, et al. Different effects of age, adiposity and physical activity on the risk of ankle, wrist and hip fractures in postmenopausal women. Bone. 2012;50:1394–400.

    Article  PubMed  Google Scholar 

  32. Nielson CM, Srikanth P, Orwoll ES. Obesity and fracture risk in men and women: an epidemiologic perspective. J Bone Miner Res. 2012;27:1–10.

    Article  PubMed  Google Scholar 

  33. Richette P, Corvol M, Bardin T. Estrogens, cartilage, and osteoarthritis. Joint Bone Spine. 2003;70:257–62.

    Article  PubMed  Google Scholar 

  34. Wilson MG, Michet Jr CJ, Ilstrup DM, et al. Idiopathic symptomatic osteoarthritis of the hip and knee: a population-based incidence study. Mayo Clin Proc. 1990;65:1214–21.

    Article  PubMed  CAS  Google Scholar 

  35. Sniekers YH, Weinans H, Bierma-Zeinstra SM, et al. Animal models for osteoarthritis: the effect of ovariectomy and estrogen treatment – a systematic approach. Osteoarthr Cartil. 2008;16:533–41.

    Article  PubMed  CAS  Google Scholar 

  36. Sniekers YH, Weinans H, van Osch GJ, et al. Oestrogen is important for maintenance of cartilage and subchondral bone in a murine model of knee osteoarthritis. Arthritis Res Ther. 2010;12:R182.

    Article  PubMed  Google Scholar 

  37. Richette P, Dumontier MF, Tahiri K, et al. Oestrogens inhibit interleukin 1beta-mediated nitric oxide synthase expression in articular chondrocytes through nuclear factor-kappa B impairment. Ann Rheum Dis. 2007;66:345–50.

    Article  PubMed  CAS  Google Scholar 

  38. Bay-Jensen AC, Tabassi NC, Sondergaard LV, et al. The response to estrogen deprivation of the cartilage collagen degradation marker, CTX-II, is unique compared with other markers of collagen turnover. Arthritis Res Ther. 2009;11:R9.

    Article  PubMed  Google Scholar 

  39. Mouritzen U, Christgau S, Lehmann HJ, et al. Cartilage turnover assessed with a newly developed assay measuring collagen type II degradation products: influence of age, sex, menopause, hormone replacement therapy, and body mass index. Ann Rheum Dis. 2003;62:332–6.

    Article  PubMed  CAS  Google Scholar 

  40. Christgau S, Tanko LB, Cloos PA, et al. Suppression of elevated cartilage turnover in postmenopausal women and in ovariectomized rats by estrogen and a selective estrogen-receptor modulator (SERM). Menopause. 2004;11:508–18.

    Article  PubMed  Google Scholar 

  41. Carbone LD, Nevitt MC, Wildy K, et al. The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis. Arthritis Rheum. 2004;11:3516–25.

    Article  Google Scholar 

  42. Karsdal MA, Sondergaard BC, Arnold M, et al. Calcitonin affects both bone and cartilage: a dual action treatment for osteoarthritis? Ann N Y Acad Sci. 2007;1117:181–95.

    Article  PubMed  CAS  Google Scholar 

  43. Sondergaard BC, Madsen SH, Segovia-Silvestre T, et al. Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes. BMC Musculoskelet Disord. 2010;11:62.

    Article  PubMed  Google Scholar 

  44. Manicourt DH, Azria M, Mindeholm L, et al. Oral salmon calcitonin reduces Lequesne’s algofunctional index scores and decreases urinary and serum levels of biomarkers of joint metabolism in knee osteoarthritis. Arthritis Rheum. 2006;54:3205–11.

    Article  PubMed  CAS  Google Scholar 

  45. Karsdal MA, Byrjalsen I, Henriksen K, et al. The effect of oral salmon calcitonin delivered with 5-CNAC on bone and cartilage degradation in osteoarthritis patients: a 14-day randomized study. Osteoarthr Cartil. 2010;18:150–9.

    Article  PubMed  CAS  Google Scholar 

  46. Bagger YZ, Tanko LB, Alexandersen P, et al. Oral salmon calcitonin induced suppression of urinary collagen type II degradation in postmenopausal women: a new potential treatment of osteoarthritis. Bone. 2005;37:425–30.

    Article  PubMed  CAS  Google Scholar 

  47. Saag KG. Bisphosphonates for osteoarthritis prevention: “Holy Grail” or not? Ann Rheum Dis. 2008;67:1358–9.

    Article  PubMed  Google Scholar 

  48. Podworny NV, Kandel RA, Renlund RC, et al. Partial chondroprotective effect of zoledronate in a rabbit model of inflammatory arthritis. J Rheumatol. 1999;26:1972–82.

    PubMed  CAS  Google Scholar 

  49. Hayami T, Pickarski M, Wesolowski GA, et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 2004;50:1193–206.

    Article  PubMed  CAS  Google Scholar 

  50. Kadri A, Funck-Brentano T, Lin H, et al. Inhibition of bone resorption blunts osteoarthritis in mice with high bone remodeling. Ann Rheum Dis. 2010;69:1533–8.

    Article  PubMed  Google Scholar 

  51. Moreau M, Rialland P, Pelletier JP, et al. Tiludronate treatment improves structural changes and symptoms of osteoarthritis in the canine anterior cruciate ligament model. Arthritis Res Ther. 2011;13:R98.

    Article  PubMed  CAS  Google Scholar 

  52. Neogi T, Nevitt MC, Ensrud KE, et al. The effect of alendronate on progression of spinal osteophytes and disc space narrowing. Ann Rheum Dis. 2008;67:1427–30.

    Article  PubMed  CAS  Google Scholar 

  53. Spector TD, Conaghan PG, Buckland-Wright JC, et al. Effect of risedronate on joint structure and symptoms of knee osteoarthritis: results of the BRISK randomized, controlled trial. Arthritis Res Ther. 2005;7:R625–33.

    Article  PubMed  CAS  Google Scholar 

  54. Bingham CO, Buckland-Wright JC, Garnero P, et al. Risedronate decreases biochemical markers of cartilage degradation but does not decrease symtpoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee. Arthritis Rheum. 2006;54:3493–507.

    Article  Google Scholar 

  55. Buckland-Wright JC, Messent EA, Bingham CO, et al. A 2 year longitudinal radiographic study examining the effect of a bisphosphonate (risedronate) upon subchondral bone loss in osteoarthritis knee patients. Rheumatology. 2007;46:257–64.

    Article  PubMed  CAS  Google Scholar 

  56. Roux C, Richette P. Impact of treatments for osteoporosis on osteoarthritis progression. Osteoporos Int. 2012;23:S881–3.

    Article  PubMed  Google Scholar 

  57. Laslett LL, Doré DA, Quinn SJ, et al. Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial. Ann Rheum Dis. 2012;71:1322–8.

    Article  PubMed  CAS  Google Scholar 

  58. Marie PJ. Strontium ranelate: new insights into its dual mode of action. Bone. 2007;40:S5–8.

    Article  CAS  Google Scholar 

  59. Alexandersen P, Karsdal MA, Qvist P, et al. Strontium ranelate reduces the urinary level of cartilage degradation biomarker CTX-II in postmenopausal women. Bone. 2007;40:218–22.

    Article  PubMed  CAS  Google Scholar 

  60. Alexandersen P, Karsdal MA, Byrjalsen I, et al. Strontium ranelate effect in postmenopausal women with different clinical levels of osteoarthritis. Climacteric. 2011;14:236–43.

    Article  PubMed  CAS  Google Scholar 

  61. Van Spil WE, Drossaers-Bakker KW, Lafeber FPJG. Associations of CTX-II with biochemical markers of bone turnover rise questions on its tissue origin: data from CHECK, a cohort study of early osteoarthritis. Ann Rheum Dis. 2013;72:29–36.

    Article  PubMed  Google Scholar 

  62. Bruyere O, Delferriere D, Roux C, et al. Effects of strontium ranelate on spinal osteoarthritis progression. Ann Rheum Dis. 2008;67:335–9.

    Article  PubMed  CAS  Google Scholar 

  63. • Reginster J-Y, Badurski J, Bellamy N, et al. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind, randomised placebo-controlled trial. Ann Rheum Dis. 2013;72:179–86. In this article, the results of the first prospective, placebo-controlled, clinical study on the effect of strontium ranelate in the treatment of osteoarthritis (of the knee) are presented.

    Article  PubMed  CAS  Google Scholar 

  64. Tat SK, Pelletier J-P, Mineau F, et al. Strontium ranelate inhibits key factors affecting bone remodeling in human osteoarthritic subchondral bone osteoblasts. Bone. 2011;49:559–67.

    Article  PubMed  CAS  Google Scholar 

  65. Henrotin Y, Labasse A, Zheng SX, et al. Strontium ranelate increases cartilage matrix formation. J Bone Miner Res. 2001;16:299–308.

    Article  PubMed  CAS  Google Scholar 

  66. Simpson ER, Hilton MJ, Tian Y, et al. Teriparatide, a chondro-regenerative therapy for injury-induced osteoarthritis. Sci Transl Med. 2011;3:101ra93.

    Article  Google Scholar 

  67. Terkeltaub R, Lotz M, Johnson K, et al. Parathyroid hormone-related proteins is abundant in osteoarthritic cartilage, and the parathyroid hormone-related protein 1-173 isoform is selectively induced by transforming growth factor beta in articular chondrocytes and suppresses generation of extracellular inorganic pyrophosphate. Arthritis Rheum. 1998;41:2152–64.

    Article  PubMed  CAS  Google Scholar 

  68. Bone HG, McClung MR, Roux C, et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone mineral density. J Bone Miner Res. 2010;25:937–47.

    PubMed  Google Scholar 

  69. Hayami T, Zhuo Y, Wesolowski GA, et al. Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis. Bone. 2012;50:1250–9.

    Article  PubMed  CAS  Google Scholar 

  70. FDA – Clinical development programs for drugs, devices and biological products intended for the treatment of OA. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances (7/99).

Download references

Conflict of Interest

Irene E.M. Bultink has received honoraria from Merck & Co. and Servier Laboratories.

Willem F. Lems has received speakers fees from Merck, Sharp & Dohme, Eli Lilly and Company, Servier Laboratories, and Amgen, and has received payment for development of educational presentations from Servier Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene E. M. Bultink.

Additional information

This article is part of the Topical Collection on Osteoporosis and Metabolic Bone Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bultink, I.E.M., Lems, W.F. Osteoarthritis and Osteoporosis: What Is the Overlap?. Curr Rheumatol Rep 15, 328 (2013). https://doi.org/10.1007/s11926-013-0328-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-013-0328-0

Keywords

Navigation