Skip to main content
Log in

The role of bone metabolism in osteoarthritis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Bone is not structurally normal in osteoarthritis (OA). Periarticular bone in OA has increased turnover, decreased bone mineral content and stiffness, and decreased trabecular numbers. The increased turnover of collagen, in particular, may affect the biomechanical competence of bone and is driven by a number of processes, including osteoblast phenotypic expression, chondrocyte apoptosis, matrix metalloproteinases, and growth factors. This turnover is reflected in alterations in biomarkers and bone mineral density (BMD). High BMD at non-joint sites is associated with an increased risk of OA; however, low BMD and high bone turnover appears to be associated with more rapid progression. These alterations in bone turnover offer new therapeutic opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Carlson CS, Loeser RF, Purser CB, et al.: Osteoarthritis in cynomolgus macaques. III: effects of age, gender, and subchondral bone thickness on the severity of disease. J Bone Miner Res 2003, 11:1209–1217.

    Article  Google Scholar 

  2. Foss MV, Byers PD: Bone density, osteoarthrosis of the hip, and fracture of the upper end of the femur. Ann Rheum Dis 1972, 31:259–264.

    PubMed  CAS  Google Scholar 

  3. Hart DJ, Mootoosamy I, Doyle DV, Spector TD: The relationship between osteoarthritis and osteoporosis in the general population: the Chingford Study. Ann Rheum Dis 1994, 53:158–162.

    PubMed  CAS  Google Scholar 

  4. Nevitt MC, Lane NE, Scott JC, et al.: Radiographic osteoarthritis of the hip and bone mineral density: the Study of Osteoporotic Fractures Research Group. Arthritis Rheum 1995, 38:907–916.

    Article  PubMed  CAS  Google Scholar 

  5. Dequeker J, Mokassa L, Aerssens J: Bone density and osteoarthritis. J Rheumatol 1995, 43:98–100.

    CAS  Google Scholar 

  6. Radin EL, Paul IL, Rose RM: Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet 1972, 1:519–522.

    Article  PubMed  CAS  Google Scholar 

  7. Spector TD, Cicuttini F, Baker J, et al.: Genetic influences on osteoarthritis in women: a twin study. BMJ 2003, 312:940–943.

    Google Scholar 

  8. Sowers MF, Hochberg M, Crabbe JP, et al.: Association of bone mineral density and sex hormone levels with osteoarthritis of the hand and knee in premenopausal women. Am J Epidemiol 2003, 143:38–47.

    Google Scholar 

  9. McAlindon TE, Felson DT, Zhang Y, et al.: Relation of dietary intake and serum levels of vitamin D to progression of osteoarthritis of the knee among participants in the Framingham Study. Ann Intern Med 2003, 125:353–359.

    Google Scholar 

  10. Uchino M, Izumi T, Tominaga T, et al.: Growth factor expression in the osteophytes of the human femoral head in osteoarthritis. Clin Orthop 2000, 377:119–125.

    Article  PubMed  Google Scholar 

  11. Beuf O, Ghosh S, Newitt DC, et al.: Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum 2002, 46:385–393.

    Article  PubMed  Google Scholar 

  12. Edinger DT, Hayashi K, Hongyu Y, et al.: Histomorphometric analysis of the proximal portion of the femur in dogs with osteoarthritis. Am J Vet Res 2000, 61:1267–1272.

    Article  PubMed  CAS  Google Scholar 

  13. Day JS, Ding M, van der Linden JC, et al.: A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res 2001, 19:914–918.

    Article  PubMed  CAS  Google Scholar 

  14. Li B, Aspden RM: Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis. Osteoporos Int 1997, 7:450–456.

    Article  PubMed  CAS  Google Scholar 

  15. Karvonen RL, Miller PR, Nelson DA, et al.: Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol 1998, 25:2187–2194.

    PubMed  CAS  Google Scholar 

  16. Kamibayashi L, Wyss UP, Cooke TD, Zee B: Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 1995, 17:27–35.

    Article  PubMed  CAS  Google Scholar 

  17. Boyd SK, Muller R, Matyas JR, et al.: Early morphometric and anisotropic change in periarticular cancellous bone in a model of experimental knee osteoarthritis quantified using microcomputed tomography. Clin Biomech 2000, 15:624–631.

    Article  CAS  Google Scholar 

  18. Zysset PK, Sonny M, Hayes WC: Morphology-mechanical property relations in trabecular bone of the osteoarthritic proximal tibia. J Arthroplasty 1994, 9:203–216.

    Article  PubMed  CAS  Google Scholar 

  19. Grynpas MD, Alpert B, Katz I, et al.: Subchondral bone in osteoarthritis. Calcif Tissue Int 1991, 49:20–26.

    Article  PubMed  CAS  Google Scholar 

  20. Mansell JP, Bailey AJ: Abnormal cancellous bone collagen metabolism in osteoarthritis. J Clin Invest 1998, 101:1596–1603. A well-conducted study delineating some of the alterations in collagen metabolism that are important in the pathogenesis of OA.

    PubMed  CAS  Google Scholar 

  21. Mansell JP, Tarlton JF, Bailey AJ: Biochemical evidence for altered subchondral bone collagen metabolism in osteoarthritis of the hip. Br J Rheumatol 1997, 36:16–19.

    Article  PubMed  CAS  Google Scholar 

  22. Hilal G, Martel-Pelletier J, Pelletier JP, et al.: Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum 1998, 41:891–899.

    Article  PubMed  CAS  Google Scholar 

  23. Bailey A, Sims T, Knott L: Phenotypic expression of osteoblast collagen in osteoarthritic bone: production of type I homotrimer. Int J Biochem Cell Biol 2002, 34:176–182. First report that the quality of the collagen is modified by the formation of type I homotrimer.

    Article  PubMed  CAS  Google Scholar 

  24. Bailey AJ, Knott L: Molecular changes in bone collagen in osteoporosis and osteoarthritis in the elderly. Exp Gerontol 1999, 34:337–351.

    Article  PubMed  CAS  Google Scholar 

  25. Kouri JB, Aguilera JM, Reyes J, et al.: Apoptotic chondrocytes from osteoarthrotic human articular cartilage and abnormal calcification of subchondral bone. J Rheumatol 2000, 27:1005–1019.

    PubMed  CAS  Google Scholar 

  26. Blumenfeld I, Livne E: The role of transforming growth factor (TGF)-beta, insulin-like growth factor (IGF)-1, and interleukin (IL)-1 in osteoarthritis and aging of joints. Exp Gerontol 1999, 34:821–829. Clear review of the role of growth factors in OA.

    Article  PubMed  CAS  Google Scholar 

  27. Sviri GEB: Differential metabolic responses to local administration of TGF-beta and IGF-1 in temporomandibular joint cartilage of aged mice. Arch Gerontol Geriatr 2000, 31:159–176.

    Article  PubMed  CAS  Google Scholar 

  28. van Beuningen H, Glansbeek HL, van der Kraan PM, van den Berg WB: Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factorbeta injections. Osteoarthritis Cartilage 2000, 8:25–33.

    Article  PubMed  Google Scholar 

  29. Pujol JP: TGF-beta and osteoarthritis: in vivo veritas? Osteoarthritis Cartilage 1999, 7:439–440.

    Article  PubMed  CAS  Google Scholar 

  30. Serra R, Johnson M, Filvaroff EH, et al.: Expression of a truncated, kinase-defective TGF-beta type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol 1997, 139:541–552.

    Article  PubMed  CAS  Google Scholar 

  31. Keen RW, Snieder H, Molloy H, et al.: Evidence of association and linkage dysequilibrium between a novel polymorphism in the transforming growth factor-beta 1 gene and hip bone mineral density: a study of female twins. Rheumatology 2001, 40:48–54.

    Article  PubMed  CAS  Google Scholar 

  32. Dequeker J, Mohan S, Finkelman RD, et al.: Generalized osteoarthritis associated with increased insulin-like growth factor types I and II and transforming growth factor beta in cortical bone from the iliac crest: possible mechanism of increased bone density and protection against osteoporosis. Arthritis Rheum 1993, 36:1702–1708.

    Article  PubMed  CAS  Google Scholar 

  33. Garnero P, Piperno M, Gineyts E, et al.: Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann Rheum Dis 2001, 60:619–626.

    Article  PubMed  CAS  Google Scholar 

  34. Stewart A, Black A, Robins SP, Reid DM: Bone density and bone turnover in patients with osteoarthritis and osteoporosis. J Rheumatol 1999, 26:622–626.

    PubMed  CAS  Google Scholar 

  35. Sowers M, Lachance L, Jamadar D, et al.: The associations of bone mineral density and bone turnover markers with osteoarthritis of the hand and knee in pre- and perimenopausal women [see comments]. Arthritis Rheum 1999, 42:483–489.

    Article  PubMed  CAS  Google Scholar 

  36. Bettica P, Cline G, Hart D, et al.: Evidence for increased bone resorption in patients with progressive knee OA: longitudinal results from the Chingford study. Arthritis Rheum 2002, In press.

  37. Hart DJ, Cronin C, Daniels M, et al.: The relationship of bone density and fracture to incident and progressive radiographic osteoarthritis of the knee: the Chingford Study. Arthritis Rheum 2002, 46:92–99. This study shows that for women who develop incident knee OA, their bone mineral density is higher and of a magnitude similar to that shown in cross-sectional studies. Low bone mineral density at the hip appears weakly related to progression.

    Article  PubMed  Google Scholar 

  38. Zhang Y, Hannan MT, Chaisson CE, et al.: Bone mineral density and risk of incident and progressive radiographic knee osteoarthritis in women: the Framingham Study. J Rheumatol 2000, 27:1032–1037. This study shows that high bone mineral density and bone mineral density gain decreased the risk of progression of radiographic knee OA, but may be associated with an increased risk of incident knee OA.

    PubMed  CAS  Google Scholar 

  39. Arden NK, Nevitt MC, Lane NE, et al.: Osteoarthritis and risk of falls, rates of bone loss, and osteoporotic fractures. Study of Osteoporotic Fractures Research Group. Arthritis Rheum 1999, 42:1378–1385. This study shows that despite having increased bone mineral density compared with control individuals, subjects with OA did not have a significantly reduced risk of osteoporotic fracture.

    Article  PubMed  CAS  Google Scholar 

  40. MacGregor AJ, Antoniades L, Matson M, et al.: The genetic contribution to radiographic hip osteoarthritis in women: results of a classic twin study. Arthritis Rheumatism 2000, 43:2410–2416.

    Article  PubMed  CAS  Google Scholar 

  41. Bhalla AK, Wojno WC, Goldring MB: Human articular chondrocytes acquire 1,25-(OH)2 vitamin D-3 receptors in culture. Biochimica et Biophysica Acta 1987, 931:26–32.

    PubMed  CAS  Google Scholar 

  42. Lane NE, Gore LR, Cummings SR, et al.: Serum vitamin D levels and incident changes of radiographic hip osteoarthritis: a longitudinal study. Study of Osteoporotic Fractures Research Group. Arthritis Rheum 1999, 42:854–860.

    Article  PubMed  CAS  Google Scholar 

  43. Dieppe P, Cushnaghan J, Young P, Kirwan J: Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis 1993, 52:557–563.

    Article  PubMed  CAS  Google Scholar 

  44. Moskowitz RW: Bone remodeling in osteoarthritis: subchondral and osteophytic responses. Osteoarthritis Cartilage 1999, 7:323–324.

    Article  PubMed  CAS  Google Scholar 

  45. Meyer JM, Dansereau SM, Farmer RW, et al.: Bisphosphonates structurally similar to risedronate slow disease progression in the guinea pig model of primary osteoarthritis. Arthritis Rheum 2001, 44:9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, D.J., Spector, T.D. The role of bone metabolism in osteoarthritis. Curr Rheumatol Rep 5, 15–19 (2003). https://doi.org/10.1007/s11926-003-0078-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-003-0078-5

Keywords

Navigation